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МАТЕРИАЛЫ 
МЕЖДУНАРОДНОЙ НАУЧНО-ТЕХНИЧЕСКОЙ КОНФЕРЕНЦИИ 

«ДИНАМИКА, НАДЕЖНОСТЬ И ДОЛГОВЕЧНОСТЬ 
МЕХАНИЧЕСКИХ И БИОМЕХАНИЧЕСКИХ СИСТЕМ» 

 
УДК 621.039 

 
Г.В. АБУШИК  

 
СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДОВ ОПРЕДЕЛЕНИЯ  

ПРОГИБА ДИАФРАГМ ПАРОВЫХ ТУРБИН  
 

Аннотация. Классические нормативные методы расчета на прочность и жесткость диафрагм 
паровых турбин, применяемые на этапе проектирования, основаны на упрощенной стрежневой модели. Такой 
подход не учитывает ряда факторов, влияющих на результаты расчетов, например, фактических условий 
сопряжения составных частей диафрагмы. Альтернативой являются методы расчетов, базирующиеся на 
современных возможностях 3d–моделирования. На примере судовой паротурбинной установки нового 
поколения в ОАО «НПО ЦКТИ» был выполнен сравнительный анализ методов определения прогиба диафрагм, 
выявлена степень влияния на прогиб диафрагм податливости пояса направляющих лопаток в зависимости от 
условия их соединения с телом и ободом и граничных условий на ободе диафрагмы.  

Ключевые слова: паровая турбина, корпус турбины, обойма, диафрагма, давление, прогиб, 
напряжения. 

 
Введение. 
Роль диафрагм в паротурбинных установках заключается в разделении внутренней 

полости цилиндра турбины на участки с различными параметрами пара. В каждой диафрагме 
размещены неподвижные лопатки, проходя между которыми поток пара ускоряется и 
приобретает необходимое направление для входа в каналы, образованные рабочими 
лопатками ротора турбины. Диафрагмы состоят из двух половин, которые устанавливаются в 
верхней и нижней половинах корпуса турбины. Минимальные зазоры в уплотнениях между 
неподвижными диафрагмами и вращаюшимися дисками ротора обеспечивают 
эффективность турбоустановки с точки зрения КПД.   

С целью получения методик, максимально точно описывающих поведение диафрагм, 
было проведено немало исследований. Были предложены различные методы оценки 
прочности и жесткости диафрагм при практическом проектировании: А.М.Валя, Д.М. Смита, 
Г.И. Пахомова [1]. Благодаря накопленному опыту проектирования и эксплуатации турбин 
предпочтение все же было отдано стержневым моделям, суть которых изложена в ОСТ 108. 
210.01–86 [2]. 

Согласно [2] на стадиях эскизного и технического проекта производится типовой 
расчет прочности и жесткости диафрагм, в основу которого положена упрощенная расчетная 
схема диафрагмы как полукольцевого стержня, опертого по внешнему контуру и 
нагруженного равномерным давлением. В нормах для типового расчета предложены простые 
формулы для определения максимальных значений упругого прогиба и нормальных 
напряжений в теле диафрагмы, а также для изгибающих моментов и напряжений в 
направляющих лопатках. На стадии рабочего проектирования производится поверочный 
расчет, в котором тело и обод рассматриваются как два полукольцевых стержня, связанные 
жестко между собой стержнями, моделирующими лопатки. Таким образом, напряженно–
деформированное состояние диафрагмы описывается теорией криволинейных стержней 
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Выводы. 
Проведенные расчеты напряженно–деформированного состояния на основе метода 

конечных элементов в трехмерной постановке с учетом различных условий закрепления, 
моделирующих разные варианты возможных фактических условий работы диафрагм, 
показали: 

 ранее используемые на стадии проектирования нормативные методы расчета 
диафрагм дают завышенную оценку прогибов, что идет в запас надежности работы 
оборудования; современные же подходы позволяют проводить уточненные оценки, 
моделируя особенности конструкции и условия ее работы; 

 расчетная величина прогиба диафрагмы существенно зависит от условий 
сопряжения ее элементов (тело, обод, направляющие лопатки) и условий опирания в корпусе 
турбины, что необходимо учитывать при построении расчетных моделей и проведении 
расчетов. 
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G.V. ABUSHIK 

 
COMPARATIVE ANALYSIS OF METHODS FOR DETERMINING  

THE DEFLECTION OF THE DIAPHRAGMS OF STEAM TURBINES 
 

Abstract. The classical normative methods for calculating the strength and rigidity of the diaphragms of steam 
turbines used at the design stage are based on a simplified rod model. This approach does not take into account a 
number of factors that affect the results of calculations, for example, the actual conditions for conjugation of the 
components of the diaphragm. An alternative are calculation methods based on modern 3D modeling capabilities. On 
the example of a new generation shipborne steam turbine at JSC NPO CKTI, a comparative analysis of the methods for 
determining the deflection of diaphragms was carried out, and influence on the deflection of the diaphragms of 
compliance of the blades depending on the condition of their connection with the body and rim and the boundary 
conditions on the rim of the diaphragm was revealed. 

Keywords: steam turbine, turbine casing, blade carrier, diaphragm, pressure, deflection, stress. 
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А.И. БОХОНСКИЙ, Л.А. ШМИДТ 
 

ОБОСНОВАНИЕ ОПТИМАЛЬНЫХ УПРАВЛЕНИЙ  
ДВИЖЕНИЕМ УПРУГИХ ОБЪЕКТОВ 

 
Аннотация. Рассмотрен алгоритм конструирования оптимальных переносных движений объектов 

как абсолютно твердых и деформируемых тел без учета и с учетом сопротивления движению. 
Оптимальность предполагает, что управлению соответствует восстанавливаемый функционал – критерий, 
принимающий экстремальное значение в действительном движении. 

Ключевые слова: упругий объект, переносное и относительное движение, оптимальное управление. 
 
Введение.  
Колебаниям механических систем посвящены работы [1 – 7]. Методы оптимального 

управления колебаниями систем рассмотрены в [5 – 8]. Исследования переносным 
оптимальным перемещением упругих систем с конечным числом степеней свободы 
приведены в работах [8 – 14] и других.  Необходимо дополнительное обоснование и 
систематизация полученных результатов. 

Цель исследований – уточнение алгоритма поиска управлений и оценка влияния 
сопротивления на колебания упругого объекта в относительном движении. 

Объект (рисунок 1) участвует в сложном движении: переносном – по отношению к 
неподвижной системе координат и относительном – по отношению к подвижной системе 
координат, движущейся поступательно. На рисунке 1 изображена упругая система с одной 
степенью свободы. Здесь программное управление задается в виде переносного ускорения 
основания упругого осциллятора и направлено в сторону поступательного движения. Способ 
реализации управления на данном этапе моделирования не обсуждается. 
 

 
 

Рисунок 1 – Сложное движение упругого объекта 
 

Задача состоит в выборе такого ускорения )(tUe , которое обеспечит достижение цели 
движения. 

В абсолютном движении  
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где  m – сосредоточенная масса (для упрощения дальше принято 1m  кг);  
с – коэффициент жесткости упругой связи.  
Динамика относительного движения (колебания упругого объекта) в проекции на ось 
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THE SUBSTANTIATION OF OPTIMAL CONTROLS  
BY THE MOTION OF ELASTIC OBJECTS 

 
Abstract. The article is considered аn algorithm for constructing optimal portable motions of objects as 

absolutely rigid and deformable bodies without taking into account and taking into account resistance to movement. 
Optimality assumes that the control corresponds to the restored functional – a criterion that takes extreme values in the 
actual motion. 

Keywords: elastic object, portable and relative motion, optimal control. 
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УДК 539.3 
 
Л.И. ВУЦИН, А.В. ДЕМАРЕВА, В.А. ИВАНОВ, А.И. КИБЕЦ, Ю.И. КИБЕЦ  

 
КОНЕЧНО – ЭЛЕМЕНТНАЯ МЕТОДИКА ИССЛЕДОВАНИЯ 
ДЕФОРМИРОВАНИЯ  И НАКОПЛЕНИЯ ПОВРЕЖДЕНИЙ  

В АРМОКАМЕННЫХ КОНСТРУКЦИЯХ ПРИ ДИНАМИЧЕСКИХ 
ВОЗДЕЙСТВИЯХ 

 
Аннотация. Исследуется трехмерная задача нестационарного деформирования и накопления 

повреждений в кирпичной кладке, армированной стальными стержнями. Исходный конструктивно–
ортотропный материал представляется в виде комплекса основного материала (кирпичной кладки), 
рассматриваемого с позиций механики сплошной среды, и стержней, ориентированных вдоль направления 
армирования.  Кирпичная кладка моделируется как континуальная разномодульная среда, свойства которой 
зависят от вида напряженно–деформированного состояния и текущего уровня поврежденности материала. 
Предполагается, что армирующие стержни воспринимают лишь осевые усилия растяжения–сжатия и 
деформируются совместно с основным материалом. Для решения задачи применяется метод конечных 
элементов и явная конечно–разностная схема интегрирования по времени типа «крест». Результаты 
численного решения задачи сопоставляются с экспериментальными данными. Исследуется влияние арматуры 
на прочность кладки. 

Ключевые слова: кирпичная кладка, армирование, динамическое воздействие, накопление 
повреждений, метод конечных элементов. 

 
Введение. 
Один из эффективных способов сейсмоусиления кирпичных стен – применение 

монолитных железобетонных аппликаций [1–14]. Его преимущество заключается в 
возможности выполнения работ по наружному контуру без прерывания эксплуатации 
сооружения. Экспериментально установлено, что для армированного таким способом 
образца предельная нагрузка повышается в 2–3 раза по сравнению с эталонной (не 
усиленной) кладкой. Реальные условия деформирования конструкций при сейсмических 
воздействиях очень сложные. Поэтому одной из важных задач сейсмостойкого строительства 
является разработка методов расчета зданий и сооружений, позволяющих наиболее точно 
оценить возможности конструкций сопротивляться сейсмическим воздействиям [15]. Анализ 
возможных последствий (разрушений) дает информацию для проектирования оптимальных, 
надежных и экономичных сооружений, к повышению безопасности населения в сейсмически 
опасных регионах страны. Несмотря на имеющийся опыт вопрос сейсмостойкости 
кирпичных стен, усиленных внешним армированием, теоретически изучен крайне мало.  

В настоящей работе излагается конечно–элементная методика и результаты 
численного исследования, позволяющие судить об эффективности такого способа усиления 
кирпичной кладки. 

1. Определяющая система уравнений. Определяющая система уравнений 
динамического деформирования армокамменной конструкции формулируется в переменных 
Лагранжа с позиций механики сплошных сред [16,17]. Применяется структурно–
феноменологическая модель динамики армированной кирпичной кладки [18,19]. Исходный 
конструктивно–ортотропный материал представляется в виде комплекса основного 
материала (кирпичной кладки), рассматриваемого с позиций механики сплошной среды, и 
стержней, ориентированных вдоль направления армирования.  Кирпичная кладка 
моделируется как континуальная разномодульная среда, свойства которой зависят от вида 
напряженно–деформированного состояния (НДС) и текущего уровня поврежденности 
материала [16]. Влияние поврежденности на процесс деформирования учитывается с 
помощью скалярной функции целостности  [18–20], представляющий собой меру 
уменьшения эффективных площадок действия напряжений по отношению к их начальному 
неповрежденному значению. Изменение меры поврежденности  описывается 
уравнениями кинетического типа:  
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где   1, 3     текущие значения первого и третьего главных напряжений (эффективных 
напряжений),  

  накопленное значение меры поврежденности,  
C  константа, используемая для регуляризации описания процесса развития 

повреждений,  
SR  ,   зависящие от вида НДС предельные значения главных напряжений при 

растяжении и сжатии,    
SSRR PfPf 0101 )(,)(    , (2)

SR
00 ,   пределы прочности материала при одноосном растяжении и сжатии. 

Соотношения, устанавливающие связь между приращениями напряжений ij , *
ij  и 

деформаций tijij    , записываются в виде [19]: 

ijijijijij trKG   00 32 , ijijij d  * , KKGGt ijijij //    

  ijijijd , BKAAAAGr ijijij   021210 3)(2  
(3)

где  ij , *
ij   изменение эффективных и приведенных напряжений на текущем 

временном шаге;  
 ,,, ijij    девиаторные и шаровые компоненты тензоров деформаций и 

напряжений,  
G, K  – модули сдвига и объемной деформации, которые определяются по формулам: 

),1(0 BKK   2/)(0
  KKK , )(1 PsigngB  , )/()(1

  KKKKg , 

 ,2/)(),1)(1( 0210
  GGGAAGG  2

321 331 PgPgA  , 
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00
2 G
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


,  02 2/)( GGGg   , 12/)( 03   GGGg   

(4)

 KKGG ,,,  значения модулей сдвига и объемной деформации при одноосном 
растяжении и сжатии,  

0G  – секущий модуль сдвига на диаграмме i  i  при чистом сдвиге (P=0), 
характеризующий нелинейную упругость. Для применения соотношений (1) – (4) требуются 
деформационные и прочностные характеристики материала при сдвиге, одноосном 
растяжении и сжатии, а также экспериментальные данные по разрушению материала в 
условиях сложного НДС, необходимые для получения функций )(),( 21 PfPf  из (2).  

При достижении мерой поврежденности критического значения )1(   происходит 
локальное разрушение кирпичной кладки. При растяжении для материала характерно 
образование микротрещин, а затем и макротрещин, перпендикулярных направлению 
главного растягивающего напряжения [18].  

Наряду с эффективными напряжениями ij , действующими на поврежденных 

площадках, вводятся приведенные напряжения *
ij , статически эквивалентные ij , но 

отнесенные к неповрежденным площадкам. Первые фигурируют при определении состояния 
материала в точке тела [18,19], вторые используются при формулировке уравнений движения 
конструкции, которые выводятся из вариационного принципа баланса виртуальных 
мощностей:  
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В (5) ij  – компоненты тензора скоростей деформаций: 

 )3,1,(2/)( ,,  jiUU ijjiij
 ,  

t

jtjjjiji dtUXXXUU
0

0, ,  , (6)

где:  iU – перемещения в общей системе координат Х,  
q
ip  – контактное давление, 

ip  – распределенная нагрузка,  
  – область, занимаемая конструкцией, 



Фундаментальные и прикладные проблемы техники и технологии 

№ 4-1 (324) 2017 ________________________________________________________________ 17 

q  – поверхность контакта, 

p  – зона действия внешнего давления, точка над символом означает частную 

производную по времени t , по повторяющимся индексам ведется суммирование, символами 
b, а помечены компоненты тензоров в кирпичной кладке и в армирующих элементах;  

  – интенсивность армирования (содержание арматуры);  
 – плотность армированной кладки:  
В зависимости от рассматриваемой задачи контактное взаимодействие 

конструктивных элементов формулируется как односторонняя связь (непроникание по 
нормали), жесткая склейка или жесткая склейка с проверкой условий прочности [18]. 

Предполагается, что армирующие стержни воспринимают лишь осевые усилия 
растяжения–сжатия и деформируются совместно с основным материалом [21]. Деформации и 
напряжения для армирующего слоя определяются в сопутствующем базисе, отслеживающем 
движение элементарного объема как жесткого целого. 

2. Метод решения. Решение задачи при заданных начальных и краевых условиях 
основано на методе конечных элементов [22–24]. Интегрирование по времени 
осуществляется по явной конечно–разностной схеме типа «крест». Кирпичная кладка 
разбивается с помощью шестигранных 8–узловых изопараметрических конечных элементов, 
в узлах которых определяются перемещения  U , скорости перемещений U  и ускорения 

 U   в общей системе координат 
TXXXX ][ 321 . Для аппроксимации скорости 

перемещений внутри конечного элемента применяются полилинейные функции формы  

      8//1/1/1,,, 332211321
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 , 11  i , 3,1i , (7) 

где  k
iU – i–я компонента скорости перемещений узла k в общем базисе.  

Аппроксимация скорости деформаций и напряжений в конечных элементах 
массивных тел приведена в [23,24].  

Для моделирования арматуры применяется континуальный подход [21], в котором 
матрица коэффициентов упругости основного материала модифицируется с учетом влияния 
анизотропии. В данном случае эта матрица представляет собой матрицу коэффициентов 
упругости кирпичной кладки с дополнительным слагаемым, учитывающим влияние 
жесткости арматуры в направлении анизотропии. Входящие в уравнения состояния 
константы берутся из анализа динамических диаграмм деформирования, полученных из 
натурного или вычислительных экспериментов. 

Армирующие стержни разбиваются на отрезки прямых, положение в пространстве 

которых определяется координатами 
l
iX  точек пересечения стержней с гранями конечных 

элементов основного материала [21]. Проскальзывание между арматурой и связующим 
материалом не рассматривается. Деформации и напряжения в стержне аппроксимируются в 
локальной системе координат, отслеживающей вращение его оси. Перерезывающими 
силами, крутящим и изгибающими моментами в стержнях пренебрегаем. Напряжения в 
стержне заменяются статически эквивалентными силами узлов конечного элемента 
кирпичной кладки, которые проецируются в общую систему координат и суммируются с 
узловыми силами от напряжений в кирпичной кладке и внешней нагрузки. Результирующие 
узловые силы подставляются в дискретный аналог уравнения движения конечно–элементной 
сетки расчетной области, который интегрируется по явной конечно–разностной схеме. Для 
подавления осцилляций численного решения при ударных воздействиях применяются 
процедуры сглаживания [25].  

3. Результаты расчетов. Изложенная выше конечно–элементная методика решения 
трехмерных нелинейных задач динамической прочности армированной кирпичной кладки, 
реализована в рамках вычислительной системы «Динамика–3» [26].  

Для верификации методики и программного обеспечения решена задача о разрушении 
блока кирпичной кладки (1,035×0,522×0,25м) при взрыве заряда ВВ типа ТГ 50/50 
цилиндрической формы (R=5см, h=15см, масса 1,84 кг), расположенного на расстоянии 2м от 
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L.I. VUCIN, A.V. DEMAREVA, V.A. IVANOV, A.I. KIBETS, Yu.I. KIBETS   

 
THE FINITE–ELEMENT METHOD OF STUDYING THE DEFORMATION 

AND DAMAGE ACCUMULATION OF REINFORCED MASONRY 
CONSTUCTIONS UNDER THE DYNAMIC LOADING 

 
Abstract. A 3–D problem of non–stationary deformation and damage accumulation of masonry reinforced by 

steel rods is investigated. The initial constructive–orthotropic material is represented as a complex of a basic material 
(masonry), which is considered by using the equations of continuum mechanics, and reinforcing rods, which are 
oriented parallel to the direction of reinforcement. A masonry is modeled as a heterogeneous medium, which properties 
are depend on the type of  stress–strain state and the current level of damage of the material. It is assumed, that the 
reinforcing rods are affected only by axial forces of tension and compression and deformed in common with the main 
material. The problem is solved by using the finite–element method and the «cross–type» explicit scheme of integration 
with respect to time. The results of numerical solution of the problem are compared with experimental data. The effect 
of reinforcement on strength of masonry is investigated. 

Keywords: masonry, reinforcement, dynamic loading, damage accumulation, finite–element method 
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В.Я. КОПП, А.И. БАЛАКИН 
 

АНАЛИЗ ПРИМЕНИМОСТИ КОМПОЗИЦИОННОГО ЗАКОНА  
ПРИ ИЗМЕРЕНИЯХ В МАШИНО–ПРИБОРОСТРОЕНИИ 

 
Аннотация. Показана универсальность полученного композиционного закона. Рассматривается 

вопрос определения оптимального числа многократных измерений исходя из вида плотности распределения 
погрешности средства измерения. Получены законы распределения случайной величины, обеспечивающие 
экстремальные значения дисперсии при заданной энтропии. Указано соответствие данных законов 
известному композиционному, обеспечивающему максимум энтропии при ограничениях на пределы изменения 
случайной величины и при заданной дисперсии. В частности, при выполнении определенных условий, он 
соответствует усеченному нормальному, равномерному и двумодальному законам. Показано, что одному 
значению энтропии соответствуют два значения дисперсии. Этот эффект обеспечивается за счет того, что 
случайная величина сосредоточена на конечном интервале. Доказана теорема о соотношении энтропии и 
дисперсии случайной величины, что позволяет согласовать понятие неопределенности, применяемое в 
информационной теории, с этим же понятием, используемым в современных стандартах на технические 
измерения. Показано, что усеченный нормальный закон распределения, обеспечивающий максимум энтропии 
при заданной дисперсии, в тоже время обеспечивает минимум дисперсии при заданной энтропии, а 
двумодальный закон обеспечивает максимум энтропии при максимуме дисперсии. Выводы базируются на 
решении двух вариационных задач с изопериметрическими ограничениями. Приведены результаты 
моделирования, позволяющие оценить правильность сделанных выводов. 

Ключевые слова: композиционный закон, неопределенность, дифференциальная энтропия, повышение 
точности измерений. 

 
Введение. 
Снижение погрешности измерений является необходимым условием повышения 

качества деталей, а, значит, и продукции в машино–приборостроении в целом. Само повышение 
качества деталей состоит в изготовлении их по более жестким допускам. Применяемые сегодня 
на практике методы повышения точности измерений, приведены в рекомендациях по 
межгосударственной стандартизации РМГ 64–2003 «ГСИ. Обеспечение эффективности при 
управлении технологическими процессами. Методы и способы повышения точности 
измерений» [1]. Одним из указанных методов повышения точности измерений является метод 
многократных измерений, на котором подробнее остановимся ниже. 

В настоящее время наряду с классическими методами оценки погрешности средств 
измерения, зафиксированных в современных ГОСТах, широко применяются 
информационные методы [2, 3]. В обоих случаях используется понятие “неопределенность”, 
но в каждом из этих случаев оно несет различный смысл. В метрологии понятие 
“неопределенность” является относительно новым в противоположность термину 
“погрешность”. Остановимся на понятиях, зафиксированных в современных ГОСТах. 

Неопределенность измерения – это параметр, связанный с результатом измерений, 
который характеризует разброс значений, которые могли бы быть обоснованно приписаны 
измеряемой величине. Из определения “неопределенности” следует, что она является 
количественной мерой точности соответствующего результата измерений, и выражает 
степень доверия, с которой может допускаться, что значение измеренной величины в 
условиях измерения лежит внутри определенного интервала значений [4]. 

Стандартная Неопределенность – это неопределенность результата измерений, 
выраженная как стандартное отклонение.  

На типе имеющейся информации о случайной величине основано деление способов 
оценивания стандартных неопределенностей на оценивания по типу А и оценивание по типу В. 

Оценка неопределенности по типу A  – метод оценивания неопределенности путем 
статистического анализа ряда наблюдений, при этом значения стандартных 
неопределенностей получают из функции плотности распределения, определяемой из 
наблюдаемого распределения частот. 

Оценка неопределенности по типу B  – метод оценивания неопределенности иным 
способом чем статистический анализ ряда наблюдений. При оценивании по типу В значения 
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стандартных неопределенностей получают из априорной функции плотности распределения, 
то есть предполагаемой функции плотности распределения, основанной на степени 
уверенности в том, что событие произойдет. 

Стандартные неопределенности часто называют в зависимости от метода их 
оценивания: стандартные неопределенности типа A  и стандартные неопределенности типа 
B . В дальнейшем речь пойдет о неопределенности типа B . 

В теории информации под неопределенностью понимают неопределенность выбора 
состояния источником информации. Количественной оценкой неопределенности в этом 
случае является энтропия источника. Погрешность измерений является непрерывной 
случайной величиной и оценкой ее неопределенности является дифференциальная энтропия. 

Целью статьи является оценка преимуществ использования композиционного закона 
распределения случайной величины, сосредоточенной на конечном интервале, 
обеспечивающего максимум дифференциальной энтропии при ограничении на дисперсию и 
определение однозначной функциональной связи между указанными выше понятиями 
неопределенности. 

Основная часть. 
Рассмотрим уменьшение неопределенности типа B  применительно к анализу 

многократных измерений, являющихся, как было указано мощным средством повышения 
точности изделий машиностроения. Данный метод позволяет повысить точность измерения, 
не прибегая к приобретению новых более точных, но дорогих средств измерения. 

Неопределенность при измерениях рассчитывается на основе функции или плотности 
распределения случайной величины, которой является погрешность измерения. Определение 
указанной функции или плотности распределения, особенно при многократных измерениях, 
является довольно сложной операцией. Вообще вопросам определения закона распределения 
погрешностей уделяется большое внимание в литературе связанной с анализом точности 
средств измерений (СИ), как например в [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. 

Наиболее широкое распространение получили нормальный, равномерный, 
треугольный (Симпсона) и трапециидальный законы, а также закон арксинуса [4, 16, 17, 18]. 
Однако, до сих пор строгое обоснование выбора законов распределения погрешностей 
измерительных приборов отсутствуют. Указанные нормальный и равномерный законы 
обладают следующей особенностью [19, 20]: они соответствуют максимуму 
дифференциальной энтропии случайной величины, в нашем случае являющейся 
погрешностью СИ, при следующих ограничениях. В случае ограничения на дисперсию 
получается нормальный закон распределения. В случае ограничения на пределы изменения 
случайной величины – равномерный. Использование каждого из этих законов имеет 
существенные недостатки. При использовании равномерного закона получаются 
завышенные теоретические дисперсии. Так, например если полагать, что 2 , где   – 
погрешность прибора, берущаяся из его паспортных данных, а   – среднеквадратическое 
отклонение, то при равномерном законе, для которого 3 , погрешность составляет 

15,4%. При использовании нормального закона, при котором случайная величина x  
изменяется от  , до  , его усекают, например в пределах 4 . Если закон 
несимметричен, то вероятность, соответствующая указанным пределам, может значительно 
отличаться от 1. Как показали расчеты и эксперименты, на реальных приборах, указанная 
вероятность может принимать значения 0,89 и ниже. 

Из приведенных примеров видно, что использование указанных законов может 
привести к значительным погрешностям при обработке результатов измерений. Поэтому в 
статье предлагается использовать закон распределения случайной величины, имеющей 
ограничения на пределы ее изменения при известных математическом ожидании и 
дисперсии, обеспечивающий максимум дифференциальной энтропии. 

При многократных измерениях сама предельная погрешность средств измерения не 
меняется, и речь идёт об изменении дисперсии погрешности результата измерений, которая 
уменьшается при увеличении количества многократных измерений в n–раз, где n – число 
многократных измерений. Однако увеличение числа n ведёт к увеличению времени 
измерений, что снижает производительность выпуска продукции. Поэтому число измерений, 
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а значит и объём снимаемой информации, должен быть минимально необходимым для 
обеспечения требуемой точности (неопределенности) измерений.  

Как известно, погрешность измерения можно свести к аддитивной даже при наличии 
мультипликативной составляющей, если речь идет об измерении в конкретной точке и 
представить воспроизводящую величину z как сумму воспроизводимой величины u и 
некоторой помехи   

, uz  
причём полагать, что помеха не зависит от z. 

В этом случае [21, 22] условная дифференциальная энтропия случайной величины z 
равна безусловной энтропии помехи , что позволяет, при известном виде ее плотности 
распределения и при заданной доверительной вероятности, получить граничную оценку 
сверху необходимого числа измерений. В нашем случае помехой является погрешность 
средства измерения. 

Доверительная вероятность дP  качества измерения задается разработчиком, исходя из 
вида и устойчивости технологического процесса и метрологических характеристик средств 
измерения. Искомая плотность )(xp  распределения может быть определена на основе 
принципа максимума дифференциальной энтропии случайной величины (для наихудшего 
случая), которой является погрешность прибора, используя принцип максимума энтропии 
Джейнса [23]. Результатом такого анализа является вид плотности распределения случайной 
величины, позволяющий получить граничную оценку необходимого числа измерений 
пользуясь выражением: 

,
2

2




n  

где  2  –дисперсия средства измерения;  
2  – требуемое значения верности при заданной доверительной вероятности дP . 

Фактически 2  является требуемой дисперсией средства измерения после n измерений. 

Требуемое значение верности 2  определяется по найденному виду плотности )(xp  

распределения и доверительной вероятности дP . Это осуществляется с использованием метода 

последовательных приближений следующим образом. Задаётся 2  и решается 

рассматриваемая ниже задача определения вида плотности )(xp  распределения случайной 
величины, которой является погрешность прибора. Вид плотности распределения выбирается 
из условия обеспечения максимума дифференциальной энтропии указанной случайной 
величины, дисперсия которой равна 2 . Далее по найденной плотности )(xp  определяется 
вероятность P  выхода результата измерения за границу поля допуска и сравнивается с 

заданным значением дP . Если дPP  , то 2  уменьшается и вновь решается указанная 

задача. Процесс продолжается до тех пор, пока не будет выполнено указанное условие. 
После того, как 2  найдено, определяется число многократных измерений. 

Рассмотрим определении плотности распределения случайной величины, 
сосредоточенной на конечном интервале при заданных ее математическом ожидании и 
дисперсии. 

Математическая постановка задачи с учетом условия, что x  не является 
центрированной случайной величиной ( 0xm ), имеет вид: 

Определить плотность )(xp , доставляющую экстремум функционалу 

,)(ln)()(max
)( 








 
b

a
диф

xp
dxxpxpxH     (1) 

при ограничениях: 
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1)( 
b

a

dxxp ;       (2) 

з

b

a
x mmdxxxр  )( ;      (3) 

22 )()( 
b

a
x dxxpmx .     (4) 

Составляя уравнение Эйлера для функционала (1) при ограничениях (2), (3), (4), 
получим 

0)(1)(ln 3
2

21  xmxxp x  . 

Введя обозначения 2
211 xm  ; xm233 2  , запишем последнее выражение в 

следующем виде: 
01)(ln 3

2
21  xxxp  .     (5) 

Решая (5) получим: 
xxxxxx eeeeexp 3

2
2113

2
23

2
211 11)(     , bxa     (6) 

где  1, 2, 3 – множители Лагранжа.  
Они численно определяются из условий (2), (3), (4) при подстановке в них (6), а зm  и 

2  заданные математическое ожидание и дисперсия случайной величины. 
Выражение (6) лежит в основе теоремы о композиционном законе распределения 

случайной величины, сосредоточенной на конечном интервале и при заданной дисперсии, 
обеспечивающей максимум дифференциальной энтропии подробный вывод которой дан в 
[24]. 

Теорема. Если случайная величина ограничена конечными пределами [a, b], то при 
заданных ее математическом ожидании зm  и дисперсии 2  максимальную 
дифференциальную энтропию обеспечивает композиционный закон распределения этой 
случайной величины вида 
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при этом если дисперсия 
12

)( 2
2 ab 
  он является двумодальным, если дисперсия 

12

)( 2
2 ab 
  – равномерным, а если дисперсия 

12

)( 2
2 ab 
  – усеченным нормальным 

законом, образующимся из не усеченного, математическое ожидание m  и 
среднеквадратическое отклонение   которого определяются из выражений 
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Подставляя полученное выражение в уравнение Эйлера и учитывая выражения для 0F

, 1F , 2F , окончательно получим: 

  01)(ln 21
2   xpx . 

Из этого выражения определяется вид плотности )(xp  распределения, 
обеспечивающий минимум дисперсии )(xD : 

1

12

1

2

)( 







 eexp
x

.      (13) 
Подставляя (13) в ограничения (11), (12) и численно решая полученную систему 

уравнений находим значения коэффициентов 21,  . 
Проведя замену переменных и учитывая, что  

2
1 2  ; Me 



1

12




, а 01  , 
получим выражения для плотности и функции распределения в следующем виде: 

2

2

2)( 
x

eMxp


 ;        (14) 





x

a

x

dxeMxF
2

2

2)(  . 

Тогда в соответствии с интегралом Эйлера–Пуассона и с учетом усечения 
нормального закона, имеем: 

 2

C
M  ,      (15) 

где 





b

a

x

dxe

C
2

2

2

2




 

Подставляя (15) в (14) получим: 

2

2

2

2
)( 



x

e
C

xp


 ; 





x

a

x

dxe
C

xF
2

2

2

2
)( 


. 

Таким образом, получившийся закон является усеченным нормальным.  
Следовательно, минимальную дисперсию при заданной энтропии, также, как и 

максимальную энтропию при заданной дисперсии обеспечивает усеченный нормальный 
закон. 

Таким образом доказано что закон обеспечивающий заданную энтропию и имеющий 

минимальную дисперсию при условии, что 
12

)(
)(

2ab
хD


  является усеченным нормальным. 

Здесь )(хD  – дисперсия полученного закона. 
Определим функциональную связь между дисперсией и энтропией. Подставим 

выражение (13) в ограничения (11), (12): 

д
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Hdxeeee  
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ln ,       (16) 
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Представим выражение (16) в виде: 

д
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2

 

Преобразовав данное выражение получим 

д
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x
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2

1
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1

2

.  (18) 

Рассмотрим второе слагаемое данного выражения. Вынесем за знак интеграла 

константу 
1

12


 

. Тогда с учетом (17) имеем: 

1

12

1

12 1
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2
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
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
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dxee
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Учитывая, что )(1
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1

2

2 xDdxeex
x











 , первое слагаемое в выражении (18) можно 

записать:  

)(
1

11

2
1

12

1

2

xDdx
x

ee
x

















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Тогда выражение (18) примет вид: 

.
)(

1

12

1
дH

xD









 

Откуда получим: 
  211)(   дHxD .           (19) 

Выражение (19) однозначно характеризует взаимосвязь между минимальной 

дисперсией )(xD  и заданной дифференциальной энтропией дH  при условии 
12

)(
)(

2ab
xD


 . 

Задача 2, позволяющая определить вид плотности распределения, обеспечивающего 
максимум дисперсии )(xD  при заданной дифференциальной энтропии дH , отличается от 
предыдущей только видом функционала: 

.)()(max 2

)( 







 
b

a
xp

dxxpxxD  

Аналогично решая указанную задачу получим: 

1

12

1

2

)( 





 eexp
x

.     (20) 

При условии, что 01  полученный закон соответствует двумодальному. 
Результаты моделирования приведены на рисунке 4. 
Как и для задачи определения минимума дисперсии, определим функциональную 

связь между максимальной дисперсией )(xD  и заданной дифференциальной энтропией дH . 
Подставим выражения для плотности распределения в ограничения (11), (12): 
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.       (22) 

Представим выражение (21) в виде: 



Секция «Т

32 _______

Пре

Рас

Вы

1

12


 









С 

представл

Тог

Отк
заданной э

Теоретическ

___________

2 – закон об

3 – закон об

б

2 – закон о

3 – зак

еобразовав

ссмотрим в

ынесем за зн

1

12

1

2









dxee
x

учетом то

ляет равенс

гда выраже

куда получ
энтропией 

кая и прикл

__________



a 

Ри
а) 1 – усеченн

беспечивающи

беспечивающ

б) 1 – усеченн

обеспечиваю

кон обеспечив

в данное вы

 






второе слаг

нак интегра

1

12


 

 . 

ого, что 




тво: 

ение (23) пр

чим функц

дH . 

ладная мех

___________

x

ee









 (1

12

1

2

 

исунок 4 – Ре
ный нормаль

ий минимум д

щий максимум

ный нормальн

щий минимум

вающий макс

ыражение п
x

x
ee











1

12

1

2

гаемое выра

ала констан

1

2

1

2

2 eex
x













2

1

2

ee
x













римет вид:
(

1

xD



циональную

)( xD

ханика» 

___________

x

ee  ln(ln 1

2

 
езультаты м
ный ( 1a , 

дисперсии ( a

м дисперсии (

ный ( 5a , 

м дисперсии 

симум ( 5a

 
получим: 

x

edx
x

 








1

2

ажения (23

нту 
1

12


 

)(1

1

xDdx 




1

2
1

1

dx
x








 
)

1

12x 





ю зависимо

 1)  дH

___________

Hdxe 




)1

12

 

моделировани
1b , 0D
1a , 1b , 

( 1a , 1b
5b , 0D

( 5a , b
5 , 5b , H

x

e











1

21

12

1

2

3). 

. Тогда с у

) , первое 

)(
1

1

xD


. 

.дH  

ость межд

21   .

__________

дH  

б 

ия: 
1,  266,0H )

266,0H , D
1 , 266,0H ,

4,0  961,0H
5 , 961,0H

961,0 , 2D

дHdx 
 

1

1

учетом (22)

слагаемое

у максима

 

______ № 4-1

) 

09999,0D )

, 622,0D ) 

1) 

1, 4,0D ) 
693,20 ) 

д .    

) можно за

е в выраж

альной дис

  

1 (324) 2017

 

 

(23)

аписать 

жении (23)

сперсией и

(24)

7 

) 

) 

и 

) 



Фундаментальные и прикладные проблемы техники и технологии 

№ 4-1 (324) 2017 ________________________________________________________________ 33 

Выражение (24) однозначно характеризует взаимосвязь между максимальной 

дисперсией )(xD  и заданной дифференциальной энтропией дH  при условии 
12

)(
)(

2ab
xD


 . 

Полученные результаты можно сформулировать в виде теоремы. 
Теорема о связи дисперсии с дифференциальной энтропией непрерывной 

центрированной случайной величины, сосредоточенной на конечном интервале. Если 
непрерывная центрированная случайная величина сосредоточена на конечном интервале, 

ограниченном предельными значениями a , b  то: при выполнении условия 
12

)(
)(

2ab
xD


  

минимальная дисперсия )(xD  и дифференциальная энтропия дH  указанной случайной 

величины cвязаны соотношением   211)(   дHxD , причем константы 1  и 2  
определяются как решения системы уравнений 

д
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


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

  

а при выполнении условия 
12

)(
)(

2ab
xD


  дифференциальная энтропия дH  и максимальная 

дисперсия )(xD  указанной случайной величины cвязаны соотношением 

  211)(   дHxD , причем константы 1  и 2  определяются как решения системы 
уравнений: 

д

b
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Следствие. Экстремальные значения дисперсии при заданной дифференциальной 
энтропии непрерывной центрированной случайной величины сосредоточенной на конечном 
интервале, ограниченном предельными значениями a , b , однозначно обеспечивает 
композиционный закон вида: 

2
211)( xeexp    , bxa  , 

причем константы 1  и 2  определяются как решения системы уравнений 

1
2

211  
b

a

x dxee  ; 

з

b

a

x Ddxeex  
2

2112  , 

где  зD  – заданное значение дисперсии. 
На основе проведенных исследований можно сделать вывод, что усеченный 

нормальный закон распределения обеспечивает максимум энтропии при заданной дисперсии 
и в тоже время минимум дисперсии при заданной энтропии, а двумодальный закон 
обеспечивает максимум энтропии при максимуме дисперсии. 

Еще раз отметим, что понятие энтропии, являющееся мерой неопределенности, в 
теории информации, в данном случае, расходится с понятием неопределенности 
используемого в качестве критерия точности измерения и приведенное в [19, 30], а 
соотношения (19) и (24) связывают эти два понятия однозначными функциональными 
зависимостями. 
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Другим важным выводом, который можно сделать из проведенных исследований, 
является то, что плотность распределения, полученная исходя из максимума энтропии 
случайной величины, сосредоточенной на конечном интервале при заданной дисперсии, 
однозначно соответствует плотностям распределения законов, обеспечивающих минимум и 
максимум дисперсии при этой же энтропии. 

В качестве дальнейших исследований будет являться анализ применимости 
полученного закона распределения в различных областях механосборочного производства в 
машино–приборостроении. 
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V.Ya. KOPP, A.I. BALAKIN 

 
THE ANALYSIS OF APPLICABILITY OF THE COMPOSITE LAW  

FOR MEASUREMENTS IN MACHINE AND INSTRUMENT BUILDING 
 

Abstract. The obtained composite law is universal. The problem of determining the optimal number of 
multiple measurements based on the type of the error distribution density of the measuring means is considered. The 
laws of distribution of a random variable are obtained, they ensure the extreme values of dispersion at specified 
entropy. It is indicated that the given law corresponds to the known compositional one which ensures maximum entropy 
under the restrictions on variation limits of the random variable and at specified dispersion. In particular, under 
certain conditions, it corresponds to an abridged normal, uniform and bimodal laws. It is shown that two dispersion 
values correspond to a single entropy value. This effect is provided due to the fact that the random variable is 
concentrated on a finite interval. The theorem on the interrelation of entropy and dispersion of a random variable is 
proved which allows us to reconcile the concept of uncertainty used in the information theory with the same concept 
used in the up–to–date standards of technical measurements. It is shown that an abridged normal distribution law 
providing maximum of entropy at specified dispersion, at the same time provides the minimum of dispersion at specified 
entropy, and the bimodal law provides the maximum of entropy at the maximum of dispersion. The conclusions are 
based on the solution of two variational problems with isoperimetric constraints. The results of modeling allowing to 
evaluate the correctness of the conclusions are presented. 

Keywords: composite law, uncertainty, differential entropy, increase of measurement accuracy. 
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УДК 620.1.08 
 

М.В. ЕРПАЛОВ, Е.А. КУНГУРОВ 
 

ПРОВЕРКА ЭФФЕКТИВНОСТИ МЕТОДИК ПОСТРОЕНИЯ КРИВЫХ 
УПРОЧНЕНИЯ МАТЕРИАЛОВ ПРИ КРУЧЕНИИ 

 
Аннотация. Испытания образцов на кручение позволяют изучать реологические свойства материалов 

в широком диапазоне изменения степени и скорости деформации, а также температуры. Ключевым 
моментом при построении кривых упрочнения является обработка экспериментальных данных, которые 
представляют собой как правило зависимость момента от угла закручивания. Однако существует ряд 
независимых методик обработки получаемых экспериментальных данных. Кроме того, не существует единого 
подхода к определению степени деформации образца при кручении. В работе выполнен обзор существующих 
подходов к изучению реологических свойств материалов при кручении и с применением метода конечных 
элементов осуществлена проверка их адекватности. 

Ключевые слова: испытания материалов, кручение, кривые упрочнения, сопротивление деформации, 
эквивалентная деформации, экспериментальные данные. 

 
Введение. 
Сопротивление пластической деформации s является ключевой характеристикой 

материала, знание которой необходимо для успешного решения задач, связанных с 
совершенствованием существующих и разработкой новых технологических процессов 
обработки металлов давлением. В общем случае сопротивление деформации материала 
зависит от влияния протекающих процессов скоростного и деформационного упрочений, а 
также наблюдаемых одновременно с этим релаксационных процессов, определяемых 
температурой заготовки. Сопротивление деформации в некоторый момент времени может 
быть представлено выражением [1] 

  tиииss  ,,, ,                                    (1) 

где  и и и – соответственно степень и скорость деформации,  
 – температура металла заготовки,  
и(t) – функция, определяющая историю нагружения и развитие деформации.  
В процессах холодной деформации принято считать, что величина s определяется 

лишь протеканием процессов степенного упрочнения, т.е. 
 иss  .                     (2) 

Кривые упрочнения материалов определяют в ходе испытаний стандартизированных 
образцов на растяжение, сжатие или кручение. Для метода испытаний образцов на кручение 
характерна возможность достижения больших значений степени деформации без 
образования шейки, а также отсутствие негативного влияния сил трения на результаты 
испытаний, которые характерны для испытаний растяжением и сжатием соответственно. При 
испытании кручением характеристикой свойств материала выступает сопротивление 
деформации сдвига: 

3/ss  .                     (3) 
На практике согласно [2, 3] данные о сопротивлении деформации материалов, 

получаемые по результатам испытаний образцов на растяжение, сжатие и кручение 
отличаются друг от друга, что противоречит гипотезе о единой кривой. При этом различие 
значений s достигает 30–40%. Это свидетельствует о недостаточной изученности процесса 
испытаний образцов на кручение и указывает на отсутствие надежного алгоритма обработки 
экспериментальной информации, позволяющего преобразовать данные, полученные в виде 
кривой в координатах момент – угол закручивания образца, к виду (1) или (2). 

Целью работы является обзор и проверка с применением компьютерного 
моделирования существующих методик обработки экспериментальных данных, получаемых 
в ходе испытаний образцов на кручение и позволяющих определить реологические свойства 
исследуемого материала. 
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Методики определения кривых упрочнения способом кручения 
В одной из первых работ по определению напряжений сдвига при кручении образцов 

была предложена методика Надаи [4, 5]. В результате эксперимента получают зависимость 
между моментом М и углом закручивания образца . Обработка экспериментальных данных 
осуществляется по формуле: 
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где   – величина сдвиговой деформации,  
r – радиус рабочей части образца.  
Не вступая в противоречие с методикой Надаи, в работе в формуле (4) вместо 

сдвиговой деформации  использована величина эквивалентной деформации и. Согласно [6] 
указанная методика активно применяется для определения реологических свойств 
материалов, нечувствительных к скоростному упрочнению. Для материалов, сопротивление 
деформации которых определяется скоростью деформации и температурными условиями 
протекания процесса, существует методика [7, 8]. Согласно данной методике сопротивление 
материала сдвиговой деформации находится по формуле: 

  mn
r

M
s 


 3

32
, (5) 

где  n и m – коэффициенты, определяющие логарифмическую зависимость момента M от 
угла закручивания активного захвата  и скорости изменения угла закручивания d/dt 
соответственно: 
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В работе [9] предложена методика обработки экспериментальных данных, 
получаемых в ходе испытания образцов на кручение, согласно которой сопротивление 
деформации сдвига определяется выражением: 

 
32

3

r

M
s


 . (8) 

Существуют и другие методики обработки экспериментальных данных для 
построения кривых упрочнения [10–13]. Однако они не получили широкого 
распространения. 

Важным при расшифровке экспериментальных данных является точное определение 
эквивалентной степени деформации, накопленной в металле образца в каждый момент 
времени. Однако в настоящее время наблюдается ситуация, при которой нет единого 
подхода к расчету этой величины. Наибольшее распространение получило выражение [14], 
известное как эквивалентная деформации при сдвиге по вон Мизесу: 

 
3


и . (9) 

В работах Колмогорова В.Л. эквивалентная степень деформации при кручении 
образца определяется выражением: 

 3




tg
и .

 
(10) 

В работе [15] представлен подход к определению степени деформации на основе 
теории Генки: 
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(11) 
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(14) 

Далее была осуществлена статистическая оценка доверительного интервала для 
генерального среднего  величины ошибки для каждого из девяти вариантов обработки 
экспериментальных данных [16]: 

 N

S
tx

N

S
tx  ,, ,

 
(15) 

где  N – число сохраненных в базу данных шагов моделирования для каждой задачи;  

,t  – значение квантили распределения Стьюдента для уровня значимости  = 0,05 и 

числа степеней свободы 1 N ;  
x  – выборочное среднее значение ошибки x;  
S – выборочное среднеквадратическое отклонение. 
Результаты исследования и обсуждение 
Результаты моделирования приведены в таблице 1 в виде доверительного интервала 

для величины , представляющей собой средневзвешенную по вероятности величину 
ошибки при расчете сопротивления деформации сдвига. 

 
Таблица 1 – Значения величины , %, при расчете сопротивления деформации сдвига 
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 82,77 ± 0,15 82,77 ± 0,15 79,84 ± 0,58 











 





24
1ln

3

2 2

и
 

199,51 ± 70,35 158,84 ± 25,63 159 ± 37,3 

 
Данные таблицы 1 свидетельствуют о несостоятельности способа расчета 

эквивалентной степени деформации на основе теории Генки [15] при построении кривых 
упрочнения материала. Ошибка при расчете значений сопротивления деформации сдвига 
достигает 25% в случае испытания образцов в холодном состоянии и 200% – при 
температуре 900°С (рисунок 2). 

Воспроизведение кривой упрочнения на основе зависимости момента кручения от 
угла поворота захвата испытательной установки при температуре 20°С является достаточно 
надежным. Расчеты эквивалентной степени деформации в соответствии с выражениями (9) и 
(10) дают близкий результат. Среднее значение ошибки рассчитанных и заданных значений 
сопротивления деформации сдвига не превышает 3,5% (рисунок 3). 
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Рисунок 2 – Напряжения сдвига для цилиндрического образца, 900°С 
 

 
 

Рисунок 3 – Напряжения сдвига для цилиндрического образца, 20°С 
 

 
 

Рисунок 4 – Напряжения сдвига для цилиндрического образца, 900°С 
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При увеличении температуры испытания до 900°С воспроизведение кривой 
упрочнения становится невозможным ввиду того, что ни одна из методик обработки 
экспериментальных данных не учитывает должным образом влияние скоростного 
упрочнения на сопротивление деформации материала (рисунок 4). Следует отметить, что 
рассчитанные и заданная кривые упрочнения являются подобными, однако величина 
абсолютной ошибки составляет в среднем 80%, т.е. расчетные значения напряжений сдвига 
являются завышенными примерно в 1,8 раза. 

Выводы. 
1. Для исследуемого материала DIN–C45 все три методики обработки 

экспериментальных данных в соответствии с выражениями (4), (5), (8) позволяют получить 
подобные результаты с точки зрения величины ошибки при расчете сопротивления 
деформации материала. 

2. Методика расчета эквивалентной степени деформации на основе теории Генки при 
определении кривых упрочнения материалов способом кручения является несостоятельной. 

3. Модели расчета эквивалентной степени деформации (9) и (10) при испытании 
образцов в холодном состоянии позволяют рассчитывать сопротивления деформации со 
средней величиной ошибки не более 3,5%. 

4. Ни одна из рассмотренных методик обработки экспериментальных данных не 
позволяет изучать свойства материалов в горячем состоянии. 

Исследование выполнено в рамках базовой части государственного задания № 11.9538.2017/8.9, 
поддержано программой 211 Правительства Российской Федерации (соглашение № 02.A03.21.0006). 
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INSPECTION OF EFFECTIVENESS CONSTRUCTION METHODS  

OF CURVES MOLDING OF MATERIALS AT THE TORQUE 
 

Abstract. Torsion tests allow studying the rheological properties of materials over a wide range of strain and 
strain rate values as well as temperature. A key moment in construction of hardening curves is the interpretation of 
experimental data, which are usually the torque – angle of twist curves. However, there are a number of independent 
methods to obtain interpretation of experimental data. In addition, there is no single approach to determining the 
degree of equivalent strain in torsion test. The paper reviews the existing approaches to the study of the rheological 
properties of materials in torsion and the application of the finite element method to verify their adequacy. 

Keywords: torsion test, hardening curves, deformation stress, equivalent strain, experimental data 
interpretation. 
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ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ БИАРТИКУЛЯРНЫХ И 

ОДНОПОЛЮСНЫХ ЭНДОПРОТЕЗОВ ТАЗОБЕДРЕННЫХ СУСТАВОВ 
 

Аннотация. Работа посвящена проблеме повышения качества эндопротезов тазобедренного сустава. 
С этой целью разработаны анатомически адаптирующиеся эндопротезы, позволяющие увеличить площадь  
контакта между упругими соприкасающимися поверхностями. 

Ключевые слова: биартикулярный эндопротез, однополюсный эндопротез, вертлужная чашка, 
вертлужная впадина, наножидкость, фуллерен С60. 
 

Введение. 
Растущая продолжительность жизни, в том числе людей, сохраняющих 

профессиональную активность вызывает необходимость разрабатывать новые конструкции и 
технологии изготовления эндопротезов тазобедренных суставов (ТС), обладающих 
повышенным сроком службы и требующих в отличие от тотальных сравнительно 
небольшого времени установки, что предназначено для пожилых, зачастую с ослабленным 
здоровьем людей, суставы которых испытывают значительно меньшие нагрузки, чем у 
молодых пациентов.  

Основная часть. 
В настоящее время решение данной проблемы может быть обеспечено 

использованием двух групп эндопротезов ТС – однополюсных и биартикулярных, 
отличающихся конструктивным исполнением и технологией изготовления головки.[1] 

Первую группу образуют следующие эндопротезы: а) с монолитными жесткими в 
радиальном направлении головками; б) с облегченными по массе пустотелыми головками с 
жесткими в радиальном направлении стенками; в) с заполненными биоинертной жидкостью 
под избыточным давлением головками с тонкими упругими в радиальном направлении 
стенками, обладающими демпфирующими свойствами. [2] 

Вторую группу образуют эндопротезы ТС: а) с жесткими в радиальном направлении 
массивными вертлужными чашками без смазки открытых шаровых пар «головка – вставка 
вертлужной чашки»; б) с упругими, анатомически адаптируемыми облегченными 
вертлужными чашками со смазкой закрытых шаровых пар «вставка вертлужной чашки – 
головка»;  в) с упругими, анатомически адаптируемыми облегченными вертлужными 
чашками с циркулирующей смазкой закрытых шаровых пар «вставка вертлужной чашки –
головка»;  г) с упругими, анатомически адаптируемыми вертлужными чашками и 
гидростатическими опорами головок закрытых шаровых пар. 

В качестве смазки закрытых шаровых пар (опор), например, титан – хирулен, хирулен – 
керамика, сапфир–сапфир и др.), используется биоинертная жидкость (наножидкость) с 
наночастицами немодифицированного углерода С60 (фуллерена), способствующего снижению в 
8 ÷ 10 раз коэффициента трения и значительному уменьшению износа шаровых пар. [3] 

Используемые в настоящее время однополюсные эндопротезы, с размещаемыми в 
вертлужной впадине таза монолитными сферическими головками, имеющими большую 
жесткость и массу, требуют сравнительно небольших временных затрат на оперативное 
вмешательство, что создает более комфортные условия для лиц пожилого возраста. Однако, 
в процессе ходьбы значительно возрастают нагрузки на хрящевой слой нижней части 
вертлужной впадины из–за увеличения массы подвижной конечности с таким эндопротезом, 
растут ударно–динамические нагрузки, а, следовательно, происходит его ускоренный износ 
и срок «выживаемости» эндопротеза снижается. Отсутствие, из–за большой жесткости, 
демпфирующих свойств не способствует частичному рассеиванию энергии нагрузок, 
возникающих при ходьбе и полностью воспринимаемых хрящевым слоем опорной части 
впадины, что ускоряет появление проблем. 
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Предлагаемые конструкции однополюсных эндопротезов ТС полностью основаны на 
применении облегченных головок с сохранением прочностных характеристик. Негативные 
последствия от использования подобных конструкций эндопротезов проявляются в виде 
интенсивного износа участков хрящевого слоя вертлужной впадины, находящихся в 
контакте со сферической поверхностью вертлужной чашки. Это связано с тем, что в отличие 
от сферической поверхности вертлужной чашки, имеющей правильную, т.е. строго 
сферическую форму, анатомическая сферическая поверхность хрящевого слоя вертлужной 
впадины имеет неправильную сферическую форму, и характеризуется наличием участков 
разной кривизны, углублений и выступов. Большая масса эндопротеза, в частности 
вертлужной чашки, негативно влияет на биомеханику (динамику) ходьбы, во многом 
определяющую степень интенсивности износа хрящевого слоя, а значит и срок его службы. 

Устранение указанных недостатков достигается выполнением вертлужной чашки в 
виде двух концентрично расположенных с зазором и соединенных между собой по краям 
полусфер. Наружная представляет собой упругую сферическую оболочку, а обращенная к 
ней поверхность внутренней полусферы выполнена «вафельной» с регулярным рельефом. 
Образованная полусферами щелевидная полость заполнена биоинертной наножидкостью, а 
вкладыш снабжен расположенным по краю кольцевым упорным буртиком, являющимся 
ограничителем углового перемещения ножки, и размещен в заполненной биоинертной 
антифрикционной наножидкостью герметичной полости конической гофрированной упругой 
оболочки, армированной по краям кольцами, снабженными коническими поверхностями, 
образующими неподвижные самостопорящиеся герметичные конические соединения с 
конической кольцевой расточкой по краю вертлужной чашки и поверхностью конуса 
большего диаметра ножки, выполненного двухступенчатым. [4] 

Наличие в конструкции вертлужной чашки наружной упругой сферической 
тонкостенной оболочки, контактирующей с хрящевым слоем вертлужной впадины, 
позволяет увеличить площадь контакта между ними, более равномерно распределить 
нагрузку на хрящевой слой. В процессе ходьбы сферическая тонкостенная оболочка, 
деформируясь, постоянно адаптируется к анатомической форме поверхности хрящевого 
слоя, а «вафельная» поверхность внутренней полусферы вертлужной чашки является 
ограничителем ее упругих прогибов. Наличие упругой полусферы позволяет демпфировать 
импульсные динамические нагрузки на ножку эндопротеза, приводящие к ее расшатыванию 
в интрамедуллярном канале бедренной кости и последующему вероятному перелому. 
Регулировкой давления жидкости в щелевой полости можно изменять жесткость упругой 
оболочки, адаптируя эндопротез к весу пациента, т.е. к действующей на сустав нагрузке. 

В конструкции эндопротеза с циркуляционной смазкой шаровой опоры, обращенная к 
наружной полусфере поверхность внутренней полусферы и наружная поверхность вкладыша 
выполнены в виде «вафельных» поверхностей, щелевидная полость с помощью отверстий в 
зоне соединения полусфер, связана с полостью конической гофрированной оболочки, а 
соосно выполненные в углублениях (карманах) «вафельных» поверхностей радиальные 
отверстия соединяют ее с полостью вкладыша, причем все внутренние полости эндопротеза 
заполнены биоинертной жидкостью – фуллереном С60. 

Углубления (карманы) «вафельной» поверхности вкладыша выполняют роль 
гидроаккумуляторов, обеспечивающих необходимую подпитку подвижного сферического 
соединения (шаровой опоры) смазывающей антифрикционной биоинертной жидкостью, 
которая, циркулируя через гарантированный зазор, выносит из него твердые частицы 
продуктов износа, способствуя, тем самым, снижению интенсивности износа его элементов. 

В конструкции эндопротеза ТС с циркулирующей смазкой и гидростатической опорой 
сферической головки, вкладыш состоит из двух соосно и оппозитно расположенных 
полусфер. Обращенная к чашке полусфера снабжена короткой юбкой, внутренняя и внешняя 
цилиндрические поверхности которой являются продолжением соответственно внутренней и 
внешней поверхностей полусферы. В юбке выполнены, с одинаковым окружным шагом, 
радиальные отверстия, соединяющие полость вкладыша со щелевидной полостью 
вертлужной чашки, образованной двумя концентрично расположенными и соединенными по 
краям полусферами – внутренней толстостенной и наружной тонкостенной. Размер (ширина) 
щелевидной полости не превышает величину допустимой упругой деформации наружной 
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тонкостенной полусферы и не позволяет ей перейти в пластическую деформацию, 
способную вызвать потерю формы или разрушение элементов эндопротеза. [5] 

При увеличении в процессе ходьбы нагрузки, головка перемещается вверх аналогично 
плунжеру, входит в цилиндрическую зону полости вкладыша, образованную 
цилиндрической юбкой, проходит выполненные в ней отверстия, отсекая их от полости 
вкладыша, и затем, перемещаясь, выдавливает находящуюся в цилиндрической зоне полости 
вкладыша жидкость, запирая ее в образовавшейся серповидной полости между головкой и 
внутренней поверхностью вкладыша. Происходящее вследствие этого увеличение давления, 
находящейся в серповидной полости жидкости, трансформирует ее в сферическую 
гидростатическую опору, воспринимающую действие нагрузки и препятствующую 
возникновению механического контакта между головкой и поверхностью вкладыша. 

Жидкость, находящаяся в щелевидной полости чашки, выдавливается из нее упруго 
деформирующейся наружной полусферой через каналы (отверстия, пазы) и гарантированный 
зазор в подвижном сферическом соединении в полость конической гофрированной 
оболочки, вызывая упругую деформацию (выпучивание) боковых стенок гофров на 
определенную величину. [6,7] 

При уменьшении нагрузки упругая полусфера чашки принимает первоначальную 
форму, а жидкость выдавливается из полости конической гофрированной оболочки обратно 
в щелевидную полость и частично в серповидную полость, благодаря накопленной в стенках 
гофров энергии упругой деформации. 

Закрытое исполнение шаровых (сферических) подвижных соединений в 
разработанных конструкциях биартикулярных эндопротезов ТС полностью, исключающее 
возможность попадания продуктов их износа в мягкие ткани организма человека, позволяет 
избежать возникновения воспалительных процессов и дополнительных затрат времени на 
процедуру их удаления из тканей при ревизионной замене эндопротеза. Наличие у головок 
однополюсных и биартикулярных эндопротезов ТС упругих стенок, обладающих 
демпфирующими свойствами, способствует снижению интенсивности износа хрящевого 
слоя вертлужной впадины и стабилизации полученного при установке положения ножки, а, 
следовательно, увеличивает время «выживаемости» эндопротеза до вероятного проведения 
ревизионной операции. 

Увеличение срока службы эндопротеза происходит также благодаря тому, что 
обладающие высокой твердостью и износостойкостью наночастицы немодифицированного 
углерода (фуллерена) С60, находящиеся в жидкой смазке, внедряясь в материал, например, 
вкладыша из хирулена, т.е. шаржируя его, повышают твердость и износостойкость 
контактной поверхности вкладыша.  

Заключение. 
Внедрение в клиническую практику новых конструкций отечественных эндопротезов 

тазобедренного сустава, особенно в условиях использования высокотехнологичного 
артроскопического оборудования, позволит резко поднять эффективность оперативных 
вмешательств и повысить качество жизни пациентов. 
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DESIGN FEATURES OF BIARTICULAR AND SINGLE–POLE 

ENDOPROSTHESIS OF THE HIP JOINTS 
 

Abstract. The work deals with the problem of improving the quality of hip implants. For this purpose we 
developed anatomically adaptable endoprostheses, which allows to increase the contact area between the elastic 
contact surfaces. 

Keywords: particularly prosthesis, bipolar prosthesis, Vetlugina Cup, acetabulum, nanofluid, fullerene C60.  
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Н.И. ПОКИНТЕЛИЦА, Е.А. ЛЕВЧЕНКО 
 

МОДЕЛИРОВАНИЕ ПОКАЗАТЕЛЕЙ КАЧЕСТВА ПОВЕРХНОСТИ  
ПРИ ТЕРМОФРИКЦИОННОЙ ОБРАБОТКЕ ЛЕГИРОВАННЫХ СТАЛЕЙ 

 
Аннотация. Представлены результаты исследований механизма формирования волнистой 

поверхности при термофрикционной обработке сталей. Обосновано теоретически и подтверждено 
экспериментально положение об образовании волнистого микропрофиля как результата периодического 
изменения толщины слоя металла вследствие взаимных относительных колебаний инструмента и заготовки. 
Установлено, что повышение эффективности процесса обработки достигается с помощью специального 
инструмента. Дисковый инструмент с эксцентриситетом обеспечивает формирование устойчивого рельефа 
на обработанной поверхности. Приведены результаты теоретических исследований процесса обработки при 
наличии эксцентриситета инструмента, выполненные с помощью методов спектрального анализа. Выполнено 
математическое моделирование процесса обработки при наличии демпферов колебаний инструмента. 
Определены спектральные характеристики динамических возмущений в приводе главного движения станка, 
которые проявляются в виде крутильных колебаний инструмента. Установлена связь спектральных 
характеристик колебаний элементов технологической системы станка со спектром волнистости 
обработанной поверхности. 

Ключевые слова: термофрикционная обработка, колебания, микропрофиль, эксцентриситет, 
инструмент, демпфер. 
 

Введение. 
При выполнении технологической операции термофрикционной обработки (ТФО) 

формирование волнистой поверхности обусловлено относительным вибрационным 
перемещением инструмента и заготовки. Эти перемещения вызывают пульсирующее 
течение расплавленного металла. Температура резания оказывает решающие воздействие на 
процесс обработки в целом, а в частности и на качество обрабатываемой поверхности [1, 7]. 

При ТФО легированных сталей теплопроводность их с повышением температуры 
изменяется в зависимости от рода и количества легирующих элементов. Исследованиями 
установлено, что у высоколегированных сталей, содержащих хром и никель, с повышением 
температуры теплопроводность увеличивается [2]. 

Силы трения, создаваемые в зоне контакта быстро вращающегося инструмента с 
движущейся навстречу заготовкой, позволяют получить необходимую температуру. А это в 
свою очередь обеспечивает снижение прочностных характеристик обрабатываемого металла, 
уменьшается напряженность процесса стружкообразования и удельная нагрузка на 
инструмент. 

Механизм формирования волнистой поверхности обоснован теоретически и 
подтвержден экспериментально. Образующаяся волнистость микропрофиля является 
результатом периодического изменения толщины слоя металла вследствие взаимных 
относительных колебаний инструмента и заготовки [8, 9]. 

Повышение эффективности процесса обработки достигается с помощью специального 
инструмента. Дисковый инструмент с эксцентриситетом обеспечивает формирование 
устойчивого рельефа на обработанной поверхности. 

Основная часть. 
Теоретические исследования процесса при наличии эксцентриситета инструмента 

выполнены с помощью методов спектрального анализа. 
Нахождение линейчатого спектра гармонических колебаний силы резания с 

возмущением частоты колебаний шпинделя осуществлено с помощью функции Бесселя [3–6]. 
Проекция на направление подачи силы резания P (t) зависит от центробежной силы 

(рисунок 1). 
При наличии эксцентриситета имеет место несбалансированная нагрузка на шпиндель 

и, соответственно, его перемещения. Для разгрузки от действия радиальных сил применен 
овальный инструмент (рисунок 1, б) и инструмент, который имеет огранку по трем граням 
(рисунок 1, г). 

Действие центробежной силы на инструмент в процессе его вращения приводит к 
дополнительному динамическому воздействию на заготовку. Проекция центробежной силы, 
действующей на заготовку, определена зависимостью 

( ) P sinmP t t  ,           (1) 
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Данное перемещение стола меняет условия формирования микропрофиля 
поверхности. 

Для обеспечения эффективности процесса обработки применен инструмент с 
демпфированием колебаний. Дисковый инструмент 1 имеет массы 2, которые 
взаимодействуют с инструментом через пружины 3 (рисунок 3). 

В процессе обработки на деталь и инструмент действуют динамические нагрузки [10]. 
На основе их анализа составлена расчетная схема динамической системы «деталь–
инструмент–демпфер» (рисунок 4). 

Рассмотрены колебания системы в горизонтальном направлении. Все характеристики 
системы приняты линейными. Уравнение, описывающее колебательное движение 
инструмента, представлено в виде: 

   
.. . . . .

1 1 2 1 1 2д д дm y P C у у С у у h у y h у у С у h у
   

             
   
     ,  (11) 

где  х   внешняя сила, действующая на инструмент;  

1y   перемещение детали;  

2y   перемещение массы демпфера;  
, ,у y y    перемещения, скорость и ускорение инструмента, соответственно;  
,С h   жесткость и коэффициент сопротивления в контакте между инструментом и 

деталью;  

1 1,С h   жесткость и коэффициент сопротивления демпфера;  

,д дС h  эквивалентные суммарные значения жесткости и коэффициента 
сопротивления шпинделя. 

Уравнение, описывающее колебательные движения детали и массы демпфера: 

   
..

1 1 1 2 11 г г гm у Р С y h y С у у h y y            (12) 

 
.. .

2 1 2 1 22m у С у у h y y
 

      
 
      (13) 

Система уравнений (11) – (13) описывает в общем виде опыт колебательного процесса 
в соответствии с обработкой детали инструментом с демпфером. Для данной системы имеют 
место нулевые начальные условия: 

. . .

1 2 1 20, 0, 0гt x y y y y y y        . 
Преобразуем систему уравнений путем группировки слагаемых и введения новых 

постоянных коэффициентов: 

 
.. . . .

2
2 1 1 2 1

.. .
2
1 1 1 1 1 1 21

.. .
2
2 2 2 2 2 3 42

2 ;

2 ;

2 ,
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Т у Т у у К у К y

Т у Т у у К у К y
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 
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
     







  (14) 

где параметры определены соотношениями: 
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N.I. POKINTELITSA, E.A. LEVCHENKO 

 
MODELING OF QUALITY INDICATORS SURFACES AT 

THERMOFRICTIONAL PROCESSING OF LEGENDED STEELS 
 
Abstract. The results of investigations of the mechanism of formation of an undulating surface during the 

thermofrictional treatment of steels are presented. The theory of the formation of a wavy microprofile as a result of the 
periodic change in the thickness of the metal layer due to the relative relative oscillations of the tool and the workpiece 
is substantiated theoretically and confirmed experimentally. It has been established that increasing the efficiency of the 
processing process is achieved with the help of a special tool. The eccentric disk tool provides the formation of a stable 
relief on the treated surface. The results of theoretical investigations of the processing process in the presence of the 
eccentricity of the instrument made using spectral analysis methods are given. The mathematical modeling of the 
processing process in the presence of damper oscillations of the tool was performed. The spectral characteristics of 
dynamic perturbations in the drive of the main motion of the machine are determined, which are manifested in the form 
of torsional oscillations of the instrument. The connection of the spectral characteristics of the oscillations of the 
elements of the technological system of the machine with the wavelength spectrum of the treated surface is established. 

Keywords: thermofrictional treatment, oscillations, microprofile, eccentricity, instrument, damper. 
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УДК 621.757.008.56 
 

В.П. ПОЛИВЦЕВ, В.В. ПОЛИВЦЕВ. 
 

ИССЛЕДОВАНИЕ ДИНАМИЧЕСКИХ ПРОЦЕССОВ 
ПРИПРОТЕКАНИИ СЖАТОГО ВОЗДУХА КАК РЕАЛЬНОГО ГАЗА 

ЧЕРЕЗ ПРОТОЧНУЮ КАМЕРУ ПОСТОЯННОГО ОБЪЕМА 
 

Аннотация. Представлены области промышленности, где используются газ как рабочее тело, 
работающее в широком  диапазоне температур и давлений. Сделан анализ  проведенных в этой области 
исследований другими авторами. Приведены исследования процесса наполнения и истечения сжатого воздуха  
через проточную камеру постоянного объема. Процесс наполнения и истечения рассматривается как 
непрерывный процесс, при котором происходит постоянное изменение параметров сжатого воздуха 
находящегося в емкости так и сжатого воздуха поступающего и истекающего из емкости постоянного 
объема. Представлены модели с учетом сжатого воздуха как реального газа описываемого уравнением 
Бертело, Ван–дер–Ваальса и эффектом Джоуля–Томсона. В работе приведена как физическая, так и 
математическая модель процесса протекания сжатого воздуха как реального газа через проточную камеру. 
Сделаны выводы по представленным исследованиям. 

Ключевые слова: воздух, истечение, масса, температура, расход, давление, реальный газ. 
 
Введение. 
В химической, нефтеперерабатывающей отраслях промышленности различные виды 

газов подаются в аппараты  под давлением 5…20МПа. Подача природного газа на 
газораспределительных станциях и в пневматических системах высокого давления 
(5…8МПа) атомных электростанций характеризуется рядом динамических параметров, 
которые необходимо определить еще на стадии проектирования или поддерживать во время 
работы, Такие параметры как время наполнения, давление и температура природного газа, 
азота или сжатого воздуха при прохождении через проточную камеру постоянного объема, 
меняются и влияют на технологические параметры процесса или на динамические 
характеристики приводов в системах газопневмоавтоматики. 

Анализ исследований и публикаций. Известны методы расчета [4…7] для моделей 
наполнения, истечения сжатого воздуха в полость постоянного объема, для моделей 
протекания через проточную камеру постоянного объема, где процесс изменения состояния 
воздуха описывается уравнением энергетического баланса, адиабатическим, изотермическим 
и политропным процессом. Воздух в таких процессах рассматривается как идеальный газ. В 
уравнениях описывающих состояние сжатого воздуха в емкости при ее наполнении, 
используется постоянная температура поступающего в емкость воздуха (магистрали), а 
температура воздуха в самой емкости не учитывается. Погрешность расчетов при 
определении времени наполнения полости постоянного объема зависит от выбранного 
процесса изменения состояния воздуха в емкости и может составлять 15…30% 
[5,6].Погрешность теоретической модели зависит также от выбранного вида процесса 
истечения (адиабатического, изотермического) сжатого воздуха, из магистрали через сопло в 
емкость и может составлять 10…20%.Точность теоретических расчетов, если нет 
экспериментальных данных, зависит и от выбранного коэффициента расхода [10,11]. Для 
пневматических систем, газовых систем газораспределительных станций, аппаратов 
высокого давления химической и нефтеперерабатывающей  промышленности, расчеты 
основанные на известных методиках для идеального газа, приводят к еще большим 
погрешностям для реальных процессов, происходящих в используемых элементах 
пневмоавтоматики  и аппаратах высокого давления (5…20МПа) и перепада температур          
(–100…+250ºС). 

Целью статьи является разработка математической модели процесса наполнения и 
истечения из проточной камеры как емкости постоянного объема, сжатого воздуха высокого 
давления, где воздух рассматривается, как реальный газ, описываемый уравнениями Ван–
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Выразим значение теплосодержания и удельной внутренней энергии газа через 
температуру и теплоемкость при постоянном давлении и постоянном объеме в виде 
выражений: 

ТсI Р ; 11 Tсu V       (4) 

С учетом выражений  (2), (3), (4)  при их подстановке в уравнение (1) получим: 

1111221 dTmсdmTсdmTсdmТс VVPММР      (5) 

где  VР сс , – удельная теплоемкость газа при его постоянном давлении и при постоянном 

объеме,  

21,, TТТМ  – температура подводящего, отводящего потоков газа и температура газа в 
камере V,  

21,, dmdmdmМ  – количество газа поступающего, истекающего из камеры и 
находящееся в камере. 

Сжатый  газ, поступающий в камеру через дроссель из магистрали с температурой 
ТМ,в первоначальный момент расширяется в ограниченной области емкости и его 
температура понижается до температуры Т1М. Затем  поступившая в камеру порция газа, 
смешивается с газом в камере, давление газа в емкости начинает возрастать и  температура 
газа повышается, при этом часть газа истекает. 

Рассмотрим стадию наполнения, когда за малый промежуток времени масса газа через 
дроссель поступила в проточную камеру. Газ, поступивший в камеру (емкость постоянного 
объема) можно рассматривать как газ, не совершающий работы при постоянной энтальпии, 
то есть как необратимый, изоэнтальпийный, адиабатический процесс. Такой процесс может 
быть описан дифференциальным эффектом Джоуля–Томсона[1,4,8].Так как для 
необратимого адиабатического процесса идеального газа данный эффект равен нулю, 
поэтому будем рассматривать дроссельный эффект Джоуля–Томсона для реального газа 
Ван–дер–Ваальса, который описывается  формулой вида [1,3]: 

P

М

c

вRTа

Р

Т 



 1/2

.                                  (6) 

где  ММ ТТТ  1 – разность температур;  

1МТ  –температура газа после расширения по эффекту Джоуля–Томсона;  
Тм – температура газа подающей магистрали до дросселя;  

МРРР  1 – изменение давления на дросселе;  

1P  –давление газа в камере;  

MP  – давление газа в подающей магистрали;  

;3 2
кркрvРа 

3
крv

в  . 

Преобразуем выражение (6) с учетом разности температур и давления, 
продифференцируем  его правую и левую часть по времени  при условии, что подводимый из 
магистрали газ имеет постоянные параметры по давлению и температуре (РМ, ТМ = const) 
получим: 

dt
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2
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1
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1
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1 222  .        (7) 

Из уравнения (7) найдем 
dt

dTМ1  и получим выражение в окончательном виде: 

      MMМPMМ
М PPвTTcRaPвRTa

dt

dP

dt

dT




  111

11 2/22             (8) 

Для описания изменения состояния газа в проточной камере будем рассматривать его, 
как реальный газ, описываемый уравнением состояния для реального газа – уравнением 
Бертело [1,2,9]: 
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  112
11

1 RTbv
vТ

а
Р 








 .                                                         (9) 

где  1Р  – давление воздуха в емкости;  
R – универсальная газовая постоянная; 

11 / mVv   – удельный объем газа в камере;  
V – объем камеры;  

23 кркркр vРТа  ;  

3/крvb  ,  

где  КРТ  – критическая температура  газа;  

крР  и крv  – давление и удельный объем газа в критической точке[12…15].  

Подставим в уравнение (9) удельный объем через объем и массу  получим кубическое 
уравнение относительно объема и массы. Продифференцируем  его с учетом того, что V = 
const и получим: 
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Преобразуем выражение (10) относительно 11dTm получим выражение вида: 


























1
2

12
1

2
1

111111
11

1111

11
11 3

2

2

1

dmRT
V

dmвam

dPmвTdmTвP
V

dmam
VdPTVdTP

вРRT
dTm .                    (11) 

Подставим 11dTm из выражения (11) в уравнение (5), преобразуем его и получим 
промежуточное выражение: 
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С учетом массового расхода dtGdm MM  , dtGdm 22  ,  211 GGmdm M  и 12 ТТ 
преобразуем относительно 1dP выражение (12) и получим: 
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где  MG , 2G  – массовый расход подведенного к камере и отведенного из камеры  газа. 

Преобразуем выражение  (13)относительно 1dP  и получим в окончательном виде: 
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Массовый расход газа, поступающий через дроссель из магистрали в проточную 
камеру емкости постоянного объема, выразим через уравнение Сен–Венана Ванцеля [5,7]: 
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где  КМК GG 2, – критический массовый расход подведенного к камере и отведенного из камеры  

газа;  

2Р  – давление истекающего из камеры газа;  

SМ, S2 – площадь проходного сечения дросселя на входе и выходе камеры;  
k – показатель адиабатического процесса;  
μ – коэффициент расхода.  
Выражение (15,17) записано для подкритеческого режима, а выражение (16,18) – для 

надкритеческого режимов истечения воздуха через дроссель в емкость. 
Найдем изменение температуры Т1в проточной камере, как емкости постоянного 

объема. Для этого используем уравнение состояния газа (10) в дифференциальной форме, 
преобразовав его относительно dT1: 
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Преобразуем  последнее уравнение и получим выражение в окончательном  виде:  
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Совместное решение уравнений (14) и (20) с учетом температуры ТМ1из уравнения (8) 
и расхода из выражений (15), (16), (17), (18) позволяет определить параметры давления и 
температуры газа в проточной камере постоянного объема при ее наполнении из магистрали 
и истечении в отводящую магистраль или атмосферу. А так же определитьпереходный и 
установившийся режим работы камеры, время этих процессов. 

Выводы. 
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1. Предложенная модель учитывает изменение параметра температурыТ1 газа в 
проточной камере (уравнение 20), а не только температуру ТМ  подводящего газа. 

2. В модели учитывается, что не вся подведенная потоком газа теплота расходуется на 
процесс сжатия в камере газа, а часть ее в первоначальный момент расходуется на процесс 
расширение газа в ограниченной области емкости. Этот процесс описывается дроссельным 
эффектом Джоуля–Томсона. 

3.  Математическая модель в данной работе основана на законах  реального газа Ван–
дер–Ваальса и Бертело, а не для идеального газа как представлено в большинстве 
анализируемых работ, что ближе отражает физические процессы с газом особенно для 
больших давлений (5…10МПа) и диапазона температур (–100…+150 ºС). 

В дальнейшем будут проведены экспериментальные исследования для различных 
режимов наполнения и истечения газа через проточную камеру. 
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V.P. POLIVTSEV, V.V. POLIVTSEV 
 

THE STUDY OF DYNAMIC PROCESSES PREPROTEIN COMPRESSED AIR 
AS A REAL GADACERET FLOW CHAMBER OF CONSTANT VOLUME 

 
Abstract. The fields of industries which use gas as the working fluid, operating in a wide range of 

temperatures and pressures were presented. Also has been made the analysis of the research in this area. The 
researches of process of filling and outflow of compressed air through the inflow chamber of constant volume are given. 
The process of filling and expiration is seen as a continuous process in which there is constant change of the 
parameters of compressed air located in the container and compressed air supply and flowing out from the container of 
constant volume. Presented models considering compressed air as a real gas based on the equation of Berthelot, Van 
der Waals and the Joule–Thomsons effect. The article provides both physical and mathematical models of the flow of 
compressed air as a real gas through a flow chamber. The conclusions about researches were presented. 

Keywords: air, outflow, mass, temperature, flow, pressure, a real gas. 

 
BIBLIOGRAPHY 

 
1. Yurenev, V.N. Teplotekhnicheskij spravochnik / V.N.YUrenev, P.D.Lebedev. – M.: EHnergiya, izdanie 

vtoroe. Tom 1, 1975. – 744 s. 
2. Polivcev, V.P. Modelirovanie processa  istecheniya  szhatogo vozduha kak idealnogo i realnogo gaza iz 

emkosti postoyannogo ob"ema dlyasistem pnevmoavtomatiki/ V.P.Polivcev, V.V.Polivcev // Vestnik SevNTU. 
Avtomatizaciya processov i upravleniya: sb. nauch. tr. – Sevastopol, 2014. – Vyp. 146. – S. 21 – 28. 

3. Polivcev, V.P. Issledovanie processa  napolneniya szhatym vozduhom kak  realnym gazom emkosti 
postoyannogo obema / V.P.Polivcev, V.V.Polivcev // Optimizaciya proizvodstvennyh processov: sb. nauch. tr. – 
Sevastopol, 2014. – Vyp. 15. – S.179– 184. 

4. Sivuhin, D.V. Obshchij kurs fiziki T. 2 Termodinamika i molekulyarnaya fizika / D.V.Sivuhin. – M.:  
Nauka, 1975. – 519 s.  

5. Gerc, E.V. Dinamika pnevmaticheskih sistem mashin / E.V.Gerc. – M.: Mashinostroenie, 1985. – 256 s. 
6. Fedorec, V.A. Gidroprivody i gidropnevmoavtomatika stankov./ V.A. Fedorec, M.N. Pedchenko, A.F. 

Pichko, YU.V. i dr – k.: vishchashk. Golovnoe izd–vo, 1987. – 375 s. 
7. Dmitriev, V.N. Osnovy pnevmoavtomatiki./ V.N.Dmitriev, V.G. Gradeckij. – M.: Mashinostroenie, 1973. – 

360 s. 
8. Uravnenie sostoyaniya realnyh gazov. R.L. Fogelson, E.R. Lihachev. ZHurnal tekhnicheskoj fiziki. Rossiya, 

Voronezh, VGU. 2004, tom 74, vyp. 7, S. 129–130. 
9. Issledovanie  processa napolneniya szhatym vozduhom emkosti postoyannogo obema cherez soplo 

postoyannogo secheniya.  Polivcev V.P., Polivcev V.V. Vestnik SevNTU, seriya avtomatizaciya processov  upravleniya 
№125, Sevastopol, 2012, S. 96– 102.  

10.  Nekrasov, B.B. Spravochnoe posobie po gidravlike, gidromashinam i gidroprivodam. / B.B. Nekrasov, 
YA.M. Vilner, YA.T. Kovalev – 2–e izd., pererab. i dop. – Minsk: Vysh. shk., 1985. – 382 s. 

11.  Pashkov, E.V. Promyshlennye mekhanotronnye sistemy na osnove pnevmoprivoda: Ucheb.posobie / E.V. 
Pashkov, YUA. Osinskij. – Sevastopol: Iz–vo SevNTU, 2007. – 401 s. 

12. Rabinovich, V.A. Teplofizicheskie svojstva neona, argona, kriptona i ksenona/ V.A. Rabinovich, A.A. 
Vasserman, V.N. Nedostup, V.S. Veksler. –M.: Izd. Standartov, 1976. – 636 s. 

13. Vargaftik, N.B. Spravochnik po teplofizicheskim svojstvam gazov i zhidkostej. – M.: Nauka, 1972. – 720 s. 
14. Fogelson, R.L. Temperaturnaya zavisimost vyazkosti / R.L. Fogelson, E.R. Lihachev   // ZHurnal 

tekhnicheskoj fiziki. – 2001, T.71, vyp.8 – S.128– 131. 
15. Vasserman, A.A. Teplofizicheskie svojstva zhidkogo vozduha i ego kompanentov /   A.A.  Vasserman, 

V.A. Rabinovich – M.: Izd. Standartov, 1968. – 239 s. 
 
Polyvtsev Victor Petrovich 
FGAOU VO Sevastopol Technical University, Sevastopol 
Ul. University, 33, Sevastopol, Russia. 99053 
Candidate of Technical Sciences, Associate Professor of 
the Department 
E–mail: vovapolivcev@yandex.ru 

Polyvtsev Vladimir Viktorovich 
Senior lecturer of the department 
FGAOU VO Sevastopol Technical University, Sevastopol 
Ul. University, 33, Sevastopol, Russia. 99053 
E–mail: vovapolivcev@yandex.ru 

  



Секция «Т

64 _______

УД
 

ПОСТР
Р

 
Анн

в коническую
стенки в эт
вывод уравн
радиуса пер
данного уча
радиусом кр

Клю
расширение,

 
Вве
Обж

распростр
обжиме т
полученно
заготовки 

 

Дан
между ма
(ниппеля)
части по 
Минимиза
выходом в

Осн
Про

характери
аналитиче
определен
сравнению
решений, 

 

Теоретическ

___________

ДК 621.7 

РОЕНИЕ
РАСШИР

нотация. Кра
ю матрицу с
той области 
нений, числе
рехода конич
астка. Полу
раевого участ
ючевые слов
, радиус пере

едение.  
жим тру
ранённой и
трубчатых 
ой поковки
с поверхно

Ри

нный крае
аксимальны
, а также д
внешней Δ
ация каждо
в цилиндри
новная ча
оцесс обра
истик иссле
еских завис
ния величи
ю с экспер
позволяющ

кая и прикл

__________

Е МОДЕЛ
РЕНИЯ П

аевой участо
с выходом в ц
от цилиндри
енно описыв
ческого участ
ученные мод
тка и радиусо
ва: модель р
ехода матриц

бных заг
 хорошо и
заготовок
и имеет м
остью матр

сунок 1 – Ис

евой дефек
ым радиус
длиной кри
Δlвнешн. и п
ой из этих
ическую ча
сть. 
азования к
едован не 
симостей д
ны Δd либ
риментальн
щих получи

ладная мех

___________

П.А. РЫЖ

ЛЕЙ РЕГ
ПРИ ОБЖ

ок поковки, по
цилиндрическ
ической повер
ающих влиян
тка матрицы
дели регресс
ом основной 
регрессии, об
цы. 

готовок в
изученной  
к с выход
место иска
рицы (рису

скривление кр

кт можно 
ом краево
иволинейно
по внутрен
х величин 
асть. 

краевого д
достаточно
для определ
о слишком
ными данн
ить значени

ханика» 

___________

ЖОВ, С.А. Е
 

ГРЕССИИ
ЖИМЕ Т

олученной из
кую часть, яв
рхности. Мет
ние относит
ы в цилиндри
сии позволяю
части цилин
бжим, конич

в кониче
операцией

дом в цил
ажение ци
унки 1, 2). 

 
раевого учас

  
охарактери
ого участка
ого участка
нней Δlвнут
является 

дефекта в 
о полно [9
ления вели
м сложны, л
ными. В св
ия данных 

___________

ЕВСЮКОВ

И ДЛЯ О
РУБЧАТ

з цилиндричес
вляется дефе
тодом плани
тельной исх
ический и угл
ют определя
дра, а такж
ческая матр

ескую ма
й листовой
линдрическ
илиндричес

тка заготов

изовать тр
а и радиус
а расширен
тр. поверхн
целью опт

части опр
9–11]. В ча
ичин Δlвнешн
либо дают 
вязи с эти
характерис

__________

В 

ОПИСАН
ТЫХ ЗАГ

ской трубчат
ектным из–з
ирования эксп
ходной толщ
ла конусност
ять разницу
е длину указа
рица, цилиндр

атрицу яв
й штамповк
кую часть 
кой части

вки при обжи

емя велич
сом основн
ния в краев
ностям заг
тимизации 

ределения 
астности, н
н. и Δlвнутр.. 
значитель

им является
стик другим

______ № 4-1

НИЯ КРА
ГОТОВО

той заготовк
за отклонени
перимента пр
щины стенки
ти матрицы
у между ма
анного участ
рическая час

вляется д
ки [1–8]. О
в краево

и и потеря

 

име 

чинами: ра
ной части 
вой зоне н
готовки (ри
процесса 

величин 
не было об
 Зависимос
ьную погре
я актуальн
ми методам

1 (324) 2017

АЕВОГО 
ОК 

ки, обжатой
ия геометрии
роизводится
и заготовки,
 на размеры
аксимальным
тка. 
сть, краевое

достаточно
Однако при
й области
я контакта

зницей Δd
цилиндра
иппельной
исунок 2).
обжима с

указанных
бнаружено
сти же для
ешность по
ным поиск
ми. 

7 

й 
и 
я 
, 
ы 
м 

е 

о 
и 
и 
а 

d 
а 
й 
. 
с 

х 
о 
я 
о 
к 



№ 4-1 (324

Рисунок 2 

В д
новизной,
регрессии

Из 
тангенсу у

В с

где  S2 –
Так

определён
показано 
пропорцио
пропорцио
достаточн
этом случ
всех остал
либо вовсе

Т.к
аналитиче
возможно 

Опр
трудоёмко

4) 2017 ____

– Схема обж

данной раб
 таким обр
и, позволяю
геометрич
угла условн

свою очеред

– толщина 
ким образо
нным форм
выше, все
ональной 
ональности
но принять
чае будет м
льных вели
е отсутство
к. αр и, соо
ескому рас
лишь путё
ределение 
ой задачей

Фу

__________

жима трубчат

боте они о
разом, буд
ющие получ
ческих соо
ной раздачи

дь Δlвнутр. м

стенки заго
ом, две из т
мулам, вклю
е эти вели

зависим
и сtgαр. Эт
 лишь одн
минимизац
ичин, харак
овать, либо
ответствен
чёту, его н
ём обработ
Δlвнутр. и αр
й – получ

ундаментал

__________

той заготовк

определяют
дут являтьс
чить числен
бражений 
и αр (рисун

l

можно опре

lвнут

отовки по к
рёх характ
ючающим в
ичины в ка
мостью 
то означае
ну из вели
ия данной 
ктеризующ
о сведён к м
но, ctgαр я
нахождение
ки экспери
р при физич
чить данны

льные и пр

__________

 
ки в коническ

 
тся методо
ся получен
нные значе
следует, ч
нок 2): 

.lвнешн  

еделить как

. lтр вне 

краю нипп
теристик кр
в себя трет
аждом кон
с всегд
ет, что за 
ичин Δd, Δ
й величины
щих краево
минимуму.
является н
е и устано
иментальны
ческом экс
ые величин

икладные п

__________

кую матрицу

ом планиро
нные в резу
ения указан
что Δlвнешн.

;d ctg р 

к 

2
.

S
ешн ctg



пельной час
раевого деф
тью характ
нкретном с
да полож
параметр о
lвнешн., Δlвну
ы, что повл
ой дефект. 
. 
неизвестной
овление свя
ых данных.
сперименте
ны прямы

проблемы т

__________

у с выходом в 

ования экс
ультате дан
нных харак
прямо про

,
р  
сти (рисуно
фекта могут
еристику. Б
случае связ
жительным
оптимизац
утр.. Критер
лечёт за со
То, есть, д

й величино
язи между 
 
е является т
ым измерен

техники и т

__________

 цилиндричес

сперимента
нной работ
ктеристик. 
опорциона

ок 2).  
т быть выч
Более того
язаны друг
м коэфф
ции в данн
рием опти
обой миним
данный деф

ой, не под
Δd, Δlвнешн

трудновып
нием с до

технологии

_______ 65

скую часть 

а. Научной
ты модели

ально Δd и

числены по
о, как было
г с другом
фициентом
ном случае
имизации в
мизацию и
фект будет

ддающейся
н., и Δlвнутр.

полнимой и
остаточной

и 

й 
и 

и 

о 
о 
м 
м 
е 
в 
и 
т 

я 
. 

и 
й 



Секция «Теоретическая и прикладная механика» 

66 ______________________________________________________________________ № 4-1 (324) 2017 

точностью представляется возможным лишь при проведении математического 
моделирования. В связи с этим будем искать выражения для определения Δd и Δlвнешн. для 

относительных величин Δd = Δd/D0 и Δlвнешн. = Δlвнешн./D0. Для вывода указанных 
зависимостей воспользуемся методом построения моделей регрессии, подробно описанного 
в [12, 13]. 

Для оптимизации процесса обжима с выходом в цилиндрическую часть будем искать 
функции Δd(Xi) и Δlвнешн.(Xi), где Xi – параметры оптимизации в натуральных значениях. В 
качестве параметров оптимизации Xi возьмём исходную относительную толщину стенки 
заготовки S0/D0, угол конусности матрицы α и относительный радиус перехода конического 
участка матрицы в цилиндрический rм/2R0 = rм/D0 (рисунок 2). 

Т.к. самой важной характеристикой краевого дефекта является величина Δd, условием 
оптимизации будет выражение в натуральных значениях переменных: 

, , 01 2 3d'(X X X )   
или, в кодированных значениях переменных: 

, , 0,                                                                                                                    (1)1 2 3d'(x x x ) 
где  х1, х2 и х3 – соответственно записанные в кодированных значениях параметры S0/D0, α 
и rм/D0. 

 
Таблица 1 –Матрица плана в натуральных значениях переменных 

Номер опыта X0 rм/D0 (X1) S0/D0 (X2) α, град. (X3) Δd Δlвнешн. 
1 1 0,109 0,059 16 0,0112 0,1379 
2 1 0,328 0,059 16 0,0070 0,1204 
3 1 1,642 0,059 16 0,0008 0,0679 
4 1 0,109 0,113 16 0,0117 0,1774 
5 1 0,328 0,113 16 0,0085 0,1533 
6 1 1,642 0,113 16 0,0013 0,0974 
7 1 0,109 0,168 16 0,0094 0,1938 
8 1 0,328 0,168 16 0,0078 0,1817 
9 1 1,642 0,168 16 0,0014 0,1314 
10 1 0,109 0,059 21 0,0149 0,1478 
11 1 0,328 0,059 21 0,0071 0,1193 
12 1 1,642 0,059 21 0,0008 0,0734 
13 1 0,109 0,113 21 0,0148 0,1817 
14 1 0,328 0,113 21 0,0097 0,1631 
15 1 1,642 0,113 21 0,0013 0,1073 
16 1 0,109 0,168 21 0,0122 0,2168 
17 1 0,328 0,168 21 0,0094 0,1971 
18 1 1,642 0,168 21 0,0014 0,1423 
19 1 0,109 0,059 30 0,0186 0,1522 
20 1 0,328 0,059 30 0,0086 0,1160 
21 1 1,642 0,059 30 0,0010 0,1073 
22 1 0,109 0,113 30 0,0132 0,1598 
23 1 0,328 0,113 30 0,0095 0,1555 
24 1 1,642 0,113 30 0,0013 0,1106 
25 1 0,109 0,168 30 0,0154 0,1741 
26 1 0,328 0,168 30 0,0102 0,1708 
27 1 1,642 0,168 30 0,0014 0,1325 

 
Т.к. величина Δd очень мала (порядка 10–3), для ее точного вычисления требуется 

построение максимально полного уравнения регрессии. В связи с возможностью проведения 
значительного объема математического моделирования [11], заменяющего физические 
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эксперименты, в качестве плана эксперимента была выбрана матрица 33 (полный факторный 
эксперимент для трёх независимых параметров, варьируемых каждый на трех уровнях). 

Матрица плана в натуральных значениях параметров (X1, X2, X3) представлена в 
таблице 1. 

Искомые функции Δd (X1, X2, X3) и Δl (X1, X2, X3) будем искать в виде: 
 

1 2 3

1 2 3

' 1 2 3
0 2
0 2
0 2

                                                                    (2)
' . 1 2 3

0 2
0 2
0 2

d b X X Xd

l b X X Xвнешн l

 
  





 
  





 
 
 

  

 
  

 
 





 
В данной формуле bd1α2β3γ – линейные коэффициенты модели, описывающей функцию 

Δd, bl1α2β3γ – линейные коэффициенты модели, описывающей функцию Δl; α, β и γ – целые 
числа от 0 до 2, определяющие количество цифр 1, 2 и 3 в индексах соответствующих 
линейных коэффициентов, а также порядок каждого фактора в соответствующем слагаемом 
модели. 

Для перехода к кодированным значениям переменных с целью получения линейных 
функций, характеризующих главные эффекты первого порядка, использовалась формула: 

( ),X x k X Aiu iu i iu i    
где  Xiu и хiu – u–е значения i–х переменных соответственно в натуральном и кодированном 
виде; 

индексы переменных соответственно лежат в диапазонах: 
31,  2,  3;  1... ;  3 27;i u N N     

ki – коэффициенты пропорциональности линейных функций xi; 
Ai – константы линейных функций xi, определяемые из условия симметричности 

матрицы плана. 
Таким образом, выражения для линейных функций xi будут иметь вид: 

1,305 ( 0,693);1 1
18,349 ( 0,113) ;                                                                                          (3)2 2
0,143 ( 22,333).3 3

x X u
x X u
x X u

  
   
   

 
Для перехода к кодированным значениям переменных с целью получения 

квадратичных функций, характеризующих главные эффекты второго порядка, 
использовалась формула: 

2 2( ),X z K x a x ciu i i iu iiu iu   
 

где  индексы переменных также лежат в диапазонах: 
31,  2,  3;  1... ;  3 27;i u N N     

Ki – коэффициенты пропорциональности квадратичных функций zi; 
ai – коэффициенты пропорциональности линейных функций xi, 
сi – константы квадратичных функций zi; 
Таким образом, выражения для квадратичных функций zi будут иметь вид: 
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24,18 ( 0,576 0,78);1 11
23 ( 0,009 0,667);                                                                                      (4)2 22

24,7 ( 0,276 0,685).3 33

z x x uu

z x x uu

z x x uu

    


   

    


 
В соответствии с [12, 13] были рассчитаны коэффициенты моделей (2). 
Таким образом, были получены две модели (Δd(хi) и Δl(хi)), состоящие из 27 

слагаемых каждая, включающих в себя произведения линейных функций xi и квадратичных 
функций zi, являющиеся громоздкими, сложными для восприятия и вызывающими большие 
сложности при расчётах. В связи с этим являлось целесообразным исключение из 
полученных моделей части слагаемых на основании анализа статистической значимости 
линейных коэффициентов этих моделей. 

В соответствии с полученными значениями доверительных интервалов 
коэффициентов bd1α2β3γ и bl1α2β3γ из условия статистической значимости следует, что многими 
коэффициентами моделей можно пренебречь. Однако, в результате построения 
соответствующих матриц неадекватности моделей [12] было установлено, что отсутствие 
учёта некоторых коэффициентов приводит к значительным погрешностям при вычислениях. 

В связи с этим матрицы неадекватности перестраивались за счет добавления ранее 
неучитываемых коэффициентов до вида, обеспечивающего рациональные с точки зрения 
сложности и точности расчётов моделями, имеющие следующий вид: 

0 1 1 3 3 12 1 2

13 1 3 23 2 3 11 1 112 2 1

. 0 1 1 2 2 13 1 3

23 2 3 11 1 33 3 133 1 3 233 2 3

'

;  

'

.

d d d d

d d d d

внешн l l l l

l l l l l

d b b x b x b x x

b x x b x x b z b x z
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b x x b z b z b x z b x z
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     
      

Подставляя значения коэффициентов, получим: 
3

1 3 1 2

1 3 2 3 1 2 1

2
. 1 2 1 3

2 3 1 3 1 3 2 3

' 10 (7,78 5,52 1,07 0,41

0,92 0,08 1,50 0,90 );  

' 10 (14,40 2,99 2,77 0,69

0,75 0,45 0,21 0,13 0,24 ).
внешн

d x x x x

x x x x z x z

l x x x x

x x z z x z x z





      

   

      
      

Полученные модели дают погрешность по сравнению с моделированием в 
диапазонах: для Δd (и, соответственно, Δd) – от 1,52 до 16,98 %, для Δlвнешн. (и Δlвнешн.) – от 
0,02 до 10,58 %. Переходя от относительных значений к абсолютным, окончательно 
получим: 

310 (7,78 5,52 1,07 0, 410 1 3 1 2
0,92 0,08 1,50 0,90 );  1 3 2 3 1 2 1                         

210 (14,40 2,99 2,77 0,69. 0 1 2 1 3
0,75 0, 45 0,21 0,13 0, 24 ).2 3 1 3 1 3 2 3

d D x x x x

x x x x z x z

l D x x x xвнешн
x x z z x z x z

       
   
        

    

                  (5)

 
Для ведения расчётов с использованием полученных моделей значения параметров   

X1 = rм/D0, X2 = S0/D0 и X3 = α из натуральных значений необходимо перевести в 
кодированные по формулам  (3) и (4), после чего уже подставлять в (5).  
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Как видно из полученных выражений (5), все они достаточно сложны и содержат 
слагаемые, являющиеся функциями 2–го порядка, что не позволяет аналитическим путём 
провести оптимизацию в соответствии с условием (1). Однако, вид данных моделей 
позволяет сделать качественные выводы о влиянии исходных параметров (X1, X2, X3) на 
величину искомых величин. 

Выводы. 
1. На основании проведенных исследований установлено, что разница между 

максимальным радиусом краевого участка и радиусом основной части цилиндра (Δd) 
заметно убывает с увеличением величины относительного радиуса скругления конического 
участка матрицы rм/D0. При этом он выше для бóльших значений исходной относительной 
толщины стенки заготовки S0/D0. 

2. Длина дефектного участка (как на внешней, так и на внутренней части поковки) 
убывает с увеличением относительного радиуса скругления кромки матрицы (rм/D0,) и 
увеличивается с увеличением исходной относительной толщины стенки заготовки S0/D0. 
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P.A. RYZHOV, S.A. EVSUKOV 

 

THE REGRESSION MODELS OBTAINING FOR THE PARISON TUBES 
EDGE BROADENING IN PROCESS OF SWAGING DESCRIBING 
 
Abstract. The edge region of the forging obtained from the cylindrical tubular workpiece, swaged in conic die 

with access to the cylindrical section is defective due to deviations of the wall geometry in this region from the 
cylindrical surface. Method of experiment planning is the derivation of equations numerically describing the effect of 
the workpiece relative initial wall thickness, die conic section to the cylindrical one transition radius and die taper 
angle to the specified region sizes. Obtained regression models allow us to determine the difference between the edge 
region maximum radius and the radius of the main part of the cylinder, and the specified area length. 

Keywords: regression model, conic die, cylindrical part, edge broadening, die transition radius. 
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А.А. ТРЕЩЕВ  
 

ПОТЕНЦИАЛЬНАЯ ЗАВИСИМОСТЬ  
МЕЖДУ ДЕФОРМАЦИЯМИ И НАПРЯЖЕНИЯМИ  

ДЛЯ ОРТОТРОПНЫХ ФИЗИЧЕСКИ НЕЛИНЕЙНЫХ МАТЕРИАЛОВ 
 

Аннотация. Рассматривается вариант обобщения нелинейного представления потенциала 
деформаций для ортотропных материалов, не подчиняющихся в направлениях главных осей анизотропии 
гипотезе «единой кривой». В основу варианта построения потенциальных зависимостей положена методика 
тензорного пространства нормированных напряжений. Рассмотрены квазилинейные и нелинейные уровни 
потенциальных зависимостей для ортотропных материалов. Представлены варианты нелинейных 
материальных функций, указана система экспериментов для их определения и способ проверки энергетической 
непротиворечивости. 

Ключевые слова: Нормированные напряжения; условие нормировки; формулы Кастильяно; 
разносопротивляющиеся материалы; ортотропные материалы; нелинейная форма потенциала. 

 
Введение.  
В строительстве и других отраслях промышленности в настоящее время получили 

широкое применение конструкционные материалы, механические свойства, которых не 
соответствуют классическим представлениям об упругопластическом деформировании 
твердых тел. Многие из этих материалов являются анизотропными [1, 2]. 

Постановка и решение проблемы.  
Построение математической модели состояния конструкционных материалов, 

универсально работающей при различных условиях нагружения, представляет собой одно из 
важнейших направлений механики деформированного твердого тела. Требуется установить 
взаимнооднозначные соотношения между компонентами напряженного и деформированного 
состояния с указанием системы экспериментов, достаточной для определения констант, 
входящих в уравнения состояния и характеризующие механические свойства 
рассматриваемого материала. 

Определяющие соотношения для нелинейно ортотропных материалов можно 
представить не только в виде прямой связи тензоров деформаций и напряжений, как это 
сделано в работах [2 – 15], но и через потенциал деформаций: 
                                                                 ...321  WWWW ,                                                       (1) 

где  ),,,,,,( 312312133132232112332211 WW  ,  

nW  однородный многочлен степени 1n  по напряжениям. 

Коэффициенты, входящие в разложение (1) являются параметрами материала, 
которые зависят от вида напряженного состояния и подлежат экспериментальному 
определению. Так для физически квазилинейных материалов имеем: 

 2
222

2
1111  AAW  3322522114

2
333  АAA  

                                              2112711336  АА  1331932238  АА  .                                        (2) 

Число слагаемых в разложении (1) с ростом n  быстро увеличивается. Так, для 2n  
имеем: 

 3
222

3
1112  ВВW  2

2211522
2
114

3
333  ВВВ  

2
3322733

2
226  ВВ   2

1133911
2
338  ВВ  

 33221110 В 2
121111 В 2

231112 В  2
311113 В  
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2
122214 В  2

232215 В 2
312216 В 2

123317 В  2
233318 В  

                                                           2
313319 В 23131220 В .                                                      (3) 

При 3n  число слагаемых достигает уже 42. 

В разложениях (2) и (3) для разносопротивляющихся материалов параметры kА  и kB  

не являются константами, а представляют собой функции, определяющие вид напряженного 
состояния. Здесь предлагаем их представить в виде комбинаций нормированных напряжений 
[3 – 10]: 

                              Sijij /  ;                  ( 3,2,1, ji ),                                                     (4) 

где  2
13

2
23

2
12

2
33

2
22

2
11 222   ijijS .                                                                  (5) 

Очевидно, что нормированные напряжения связаны условием нормировки [3 – 10]: 

                                             1222 2
13

2
23

2
12

2
33

2
22

2
11   ijij .                                 (6) 

Параметры kА  и kB  представим следующими функциями: 

                                 nnkmAkkAkА                                 – для     3,2,1k ; 

                                 )ppnn(kmAkkAkА                    – для 6,5,4k ; 

                                 np2kmAkkAkA                                – для 9,8,7k ; 

                                 nnkmBkkBkB                                   – для 3,2,1k ;                                (7) 

                                 )ppnn(kmBkkBkB                         – для 9,...,4k ; 

                                 )qqppnn(kmBkkBkB            – для 10k ; 

                                 )qp2nn(kmBkkBkB                     – для 19,...,11k ; 

                                 )stqrnp(kmB2kkBkB           – для 20k . 

Уравнения связи компонентов тензоров деформаций и напряжений для нелинейно 
ортотропных материалов могут быть определены в главных осях анизотропии на основе 
потенциала деформаций (1) – (3) в соответствии с формулами Кастильяно: 

                                                    
ij

W
ijе 


 ;                     )3,2,1,( ji .                                           (8) 

Константы потенциала деформаций определяются по результатам обработки данных 
испытаний образцов ортотропного материала на одноосное растяжение и одноосное сжатие 
поочередно вдоль главных осей анизотропии и под углом 450 к ним с использованием метода 
наименьших квадратов. Последние опыты можно заменить экспериментами по сдвигу в 
главных плоскостях анизотропии. 

Выводы по исследованию и перспективы его дальнейшего развития. Из анализов 
проведенных исследований можно утверждать, что нелинейная форма потенциала 
деформаций дает результаты, максимально приближенные к экспериментам. Поэтому 
очевидно, что предложенная модель структурно ортотропных упруго–пластических 
разносопротивляющихся материалов, может быть использована для расчета ответственных 
конструкций, работающих при сложных напряженных состояниях. При получении 
материальных функций необходимо проводить проверку энергетической 
непротиворечивости в соответствии с требованиями постулата Дуккера [3, 6, 9, 10]:  

                                               0
2





 ijkm

ijkm
ijij

W
е 


 .                                             (9) 
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Предложенные уравнения связи деформаций с напряжениями с учетом получаемых из 
экспериментов констант для ортотропных композитов [11 – 15] удовлетворяют 
ограничениям (9). 

 
СПИСОК ЛИТЕРАТУРЫ 

 
1. Амбарцумян, С.А. Теория анизотропных пластин: прочность, устойчивость, колебания / С.А. 

Амбарцумян // М.: Наука, 1967. – 266 с. 
2. Амбарцумян, С.А. Основные уравнения и соотношения разномодульной теории упругости 

анизотропного тела / С.А.Амбарцумян // Изв. АН СССР. МТТ. – № 3. – С. 51 – 61. 
3. Трещев, А.А. Теория деформирования и прочности материалов с изначальной или наведенной 

чувствительностью к виду напряженного состояния. Определяющие соотношения / А.А. Трещев. – Москва – 
Тула: РААСН – ТулГУ, 2016. – 328 с. 

4. Трещев, А.А. Анизотропные пластины и оболочки из разносопротивляющихся материалов / А.А. 
Трещев. – Москва – Тула: РААСН – ТулГУ, 2007. – 160 с. 

5. Трещев, А.А. Изгиб круглых пластин из ортотропного нелинейного разносопротивляющегося 
материала / А.А. Трещев, Д.А. Ромашин // Известия ТулГУ. Технические науки. – Тула: Изд–во ТулГУ. – 2011. 
– Вып. 2. – С. 494–502. 

6. Трещев, А.А. Определяющие соотношения для нелинейных анизотропных материалов, 
чувствительных к виду напряженного состояния / А.А.Трещев, Д.А. Ромашин // Вестник Нижегородского 
университета им. Н.И. Лобачевского. – Н.Новгород: Изд–во ННГУ им. Н.И. Лобачевского. – 2011. – №4. – 
Часть 4. – С. 1740–1742.  

7. Трещев, А.А. Изгиб прямоугольных пластин из ортотропного нелинейно–упругого 
разносопротивляющегося материала / А.А. Трещев, В.Г. Теличко, Д.А. Ромашин // Вестник ЧГПУ им. И.Я. 
Яковлева. Механика предельного состояния. – Чебоксары: Изд–во ЧГПУ. – 2012. – Т. 2. – C. 131–139. 

8. Трещев, А.А. Изгиб прямоугольных пластин из ортотропного нелинейного разносопротивляющегося 
материала / А.А. Трещев, В.Г. Теличко, Д.А. Ромашин // Строительная механика и расчет сооружений. – М: 
ЦНИИСК им. В.А. Кучеренко. – 2012. – № 6 (239). – С. 42–48. 

9. Трещев, А.А. Определяющие соотношения для ортотропных нелинейно–упругих 
разносопротивляющихся материалов / А.А. Трещев, Д.А. Ромашин // Вестник отделения строительных наук. 
Москва–Орёл–Курск: ФГО УВПО «Госуниверситет–УНПК», 2011. – Вып. 15. – С. 151–153. 

10. Трещев, А.А. Определяющие соотношения для ортотропных нелинейно–упругих 
разносопротивляющихся материалов / А.А. Трещев, Д.А. Ромашин // Вестник центрального регионального 
отделения Российской академии архитектуры и строительных наук. – Воронеж: Воронежский государственный 
архитектурно–строительный университет, 2011. – Вып. 10. – С. 135–141. 

11. Schmueser, D.W. Nonlinear Stress–Strain and Strength Response of Axisymmetric Bimodulus Composite 
Material Shells / D.W. Schmueser // AIAA Journal. – 1983. – Vol. 21. – №12. – P. 1742 – 1747. 

12. Reddy, L.N. On the Behavior of Plates Laminated of Bimodulus Composite Materials / L.N. Reddy, 
C.W.Bert // ZAMM. – 1982. – Vol. 62. – № 6. – P. 213 – 219. 

13. Jones, R.M. A Nonsymmetric Compliance Matrix Approach to Nonlinear Multimodulus Ortotropic 
Materials / R.M. Jones // AIAA Journal. – 1977. – Vol. 15. – № 10. – P. 1436 – 1443. 

14. Jones, R.M. Modeling Nonlinear Deformation of Carbon–Carbon Composite Material / R.M. Jones // 
AIAA Journal. – 1980. – Vol. 18. – № 8. – Р. 995 – 1001. 

15. Jones, R.M. Bucling of Stiffened Multilayered Circular Shells with Different Ortotropic Moduli in Tension 
and Compression / R.M. Jones // AIAA Journal. – 1971. – Vol. 9. – № 5. – P. 917 – 923. 

 
Трещев Александр Анатольевич 
ФГБОУ ВО Тульский государственный университет, г. Тула 
Доктор технических наук, профессор, заведующий кафедрой «Строительство, строительные 
материалы и конструкции» 
300012, г. Тула, проспект Ленина, 92 
Teл. 8–(4872)–25–71–08 
E–mail: taa58@yandex.ru 
 

 
 



Секция «Теоретическая и прикладная механика» 

74 ______________________________________________________________________ № 4-1 (324) 2017 

A.A. TRESCHEV 
 

THE POTENTIAL DEPENDENCE BETWEEN STRAINS AND STRESSES 
FOR AN ORTHOTROPIC PHYSICALLY NONLINEAR MATERIALS 

 
Abstract. A variant of the generalized nonlinear representation of the strain potential for orthotropic 

materials, is not subordinate to the directions of the main axes of anisotropy the hypothesis of the «single curve». The 
basis of the option of building a potential dependency based on the methodology of tensor space of normalized stresses. 
Considered quasi–linear and non–linear potential dependencies for orthotropic materials. The options presented 
nonlinear material functions specified system experiments for their definition and how to check energy consistency. 

Keywords: normal tension; the condition of normalization; Castiglianos formulas; different resistant 
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УДК 621.822 
 

Ю.Л. РАПАЦКИЙ, В.М. ЛИПКА 
 

АНАЛИЗ ФАКТОРОВ, ВЫЗЫВАЮЩИХ РЕЛАКСАЦИЮ  
И РАЗРУШЕНИЕ РЕЗЬБОВЫХ СОЕДИНЕНИЙ  

В ИЗДЕЛИЯХ МАШИНОСТРОЕНИЯ 
 

Аннотация. Рассмотрено влияние факторов, вызывающих релаксацию и разрушение 
высоконагруженных ответственных резьбовых соединений М6…М20 в современных изделиях машинострения. 
Предложена математическая модель, иллюстрирующая взаимосвязь эксплуатационных нагрузок с отказами 
резьбовых соединений. 

Ключевые слова: резьба, резьбовое соединение, релаксация, отказ, надежность. 
 
Введение.  
Применение резьбовых соединений (РС) является наиболее целесообразным при 

ручной и автоматизированной сборке изделий в машиностроении и других отраслях 
промышленности. В большинстве случаев РС не имеют альтернативы, несмотря на развитие 
аддитивных и других современных технологий изготовления деталей и изделий 
машиностроения (ИМ). Самыми распространенными в современных ИМ являются РС 
М6…М20, получаемые как ручной, так автоматизированной сборкой. Наиболее актуальна 
проблема отказов для высоконагруженных РС, подверженных при эксплуатации 
знакопеременным нагрузкам различной амплитуды и частоты. Для современных сложных 
ИМ, таких, как автомобильные двигатели внутреннего сгорания (АДВС), компрессоры, 
насосы, кинематические узлы электроприводов, мехатронные модули технологического 
оборудования, станки, элементы судового оснащения и др., характерны высокие статические, 
динамические и вибрационные нагрузки, способствующие релаксации и разрушению РС, что 
приводит к отказам ИМ и значительным затратам на их ремонт или замену. Отказы РС 
проявляются при эксплуатации АДВС различных производителей – ЗМЗ, ВАЗ, HYUNDAY и 
др., что свидетельствует об актуальности поиска технического решения, исключающего 
возможность раскрытия стыка в ответственном групповом РС головки блока цилиндров 
(ГБЦ) с блоком цилиндров (БЦ), в т.ч. при эксплуатации в условиях высоких температур и 
недостаточного охлаждения. 

Анализ достижений и публикаций. Несмотря на большое количество исследований 
и публикаций [1–6] и др., проблема надежности РС не может до настоящего времени в 
полной мере считаться решенной, в связи с тем, что отказы, как правило, внезапно 
возникают в ИМ, собранных из деталей, которые по существующим критериям технического 
контроля считаются годными. Применение известных средств фиксации и стопорения РС во 
многих ИМ, в частности, в АДВС, неэффективно и нецелесообразно. В [4] предложена 
методика предотвращения возникновения микротрещин в витках резьбы при 
резьбонакатывании. В условиях острой конкуренции между производителями ИМ, к 
надежности машиностроительной продукции предъявляются всё более высокие требования, 
вместе с тем релаксация и разрушение высоконагруженных РС продолжают оставаться 
одними из самых частых причин отказов АДВС, являющихся одними из массовых изделий 
современного машиностроения.  

Исследовательская часть. Исследования, проведенные авторами в 
автотранспортных и авторемонтных предприятиях Крыма и Севастополя, показали, что 
эксплуатация АДВС в летний период, в условиях горной местности и высоких тепловых 
нагрузок приводит к перегреву двигателей и деформации ГБЦ, что вызывает раскрытие 
стыка в зоне наименее затянутой шпильки (болта) и отказ двигателя. Данные [1] и 
результаты исследований авторов, анализировавших причины отказов АДВС при 
эксплуатации, дают основания утверждать, что в современных условиях важнейшими 
факторами, приводящими к релаксации и разрушению РС и, следовательно, к раскрытию 
стыка и отказу ИМ, следует считать:  

1) сочетание в затянутом РС напряжений растяжения, изгиба и кручения, 
возникающих в стержне болта либо шпильки после сборки, которые, действуя совместно, 
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В качестве допущения примем, что расстояние между болтами крепления ГЦ достаточно 
велико и их взаимным влиянием можно пренебречь. Такое допущение основано на том, что 
ослабление затяжки любого из болтов в рассматриваемом групповом РС вызывает его отказ. 
Механизм силового воздействия на затянутые РД в АДВС подробно анализировать не будем, 
ограничимся рассмотрением сил, оказывающих наибольшее влияние на исследуемое РС. 

Пусть масса m, в данном случае, для рассматриваемого группового десятиболтового 
РС, – десятая часть массы присоединенной детали (ГБЦ), приходящаяся на один болт, 
колеблется под действием периодической силы )(tQ . Дифференциальное уравнение 
движения рассматриваемой системы «БЦ – ГБЦ – болт» в комплексном виде можно записать 
следующим образом [5]:  

)())(1( tQyСCKimy ббц  ,     (3) 

где  m – часть массы головки цилиндров, приходящаяся на один болт, в рассматриваемом 
случае Гmm 1,0 ,  

Гm – масса головки цилиндров;  

бцС , бC  – жесткость, соответственно, блока цилиндров и болта; К – коэффициент 

упругого сопротивления. 
После разложения функции )(tQ  в ряд Фурье и необходимых преобразований, 

решение уравнения (3) будет иметь вид  [5]:  
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где  
m

СC
p бцб   – частота собственных колебаний системы;  

nG , nH  – коэффициенты разложения: 
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где  T – преобладающий период изменений внешней силы: 222

2




np

Kp
t n
КТn 

  

Из (4) видно, что, если частота собственных колебаний системы «ГБЦ–БЦ–болт» 
совпадает с частотой одной из гармоник возмущающей силы, то в РС возникает резонанс. В 
этом случае амплитуда вынужденных упругих колебаний ГБЦ превысит величину 
деформации от предварительного сжатия деталей, что приведет к падению давления на 
поверхностях стыка до нуля и отказу РС. 

Раскрытие стыка, состоящее в превышении вынужденных упругих деформаций в РС 
над предварительными, возникшими после затяжки имеет место при определенных 

соотношениях между 
p


 и 

0Q

Qm , где mQ – максимальное значение возмущающей силы, 0Q  – 

усилие предварительной затяжки болта. Для нахождения искомой зависимости между 
указанными величинами, рассмотрим пульсирующую нагрузку по оси y как преобладающую 
в РС ГБЦ и БЦ:  

0≤ )(tQ ≤ mQ  
 

Значения соответствующих коэффициентов разложения будут: 

;0...;
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Пренебрегая демпфированием, после преобразований получим уравнение 
вынужденных колебаний ГБЦ: 
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tyyy гц cos0 . 

Амплитуда вынужденных колебаний 0y  ГБЦ будет равна: 

гцyy  0 ,      (5) 

где  yгц,– статическое смещение ГБЦ, соответствующее среднему значению возмущающей 
силы, равное: 

22 pm

Q
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гц 
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 μ – динамический коэффициент:  
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Из выражений (3–5), следует, что условие раскрытия стыка в РС ГБЦ с БЦ, при 

известных значениях отношений 
p


 и 

0Q

Qm , для рассмотренного характера переменной 

нагрузки по оси y может быть представлено следующим образом: 
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Научная новизна. Для различных случаев действия внешней нагрузки, путем подбора 
значений коэффициентов жесткости, соответственно, болта и базовой детали – БЦ,             

бC  и бцC , возможно предотвратить возникновение резонанса и отказ РС ГБЦ с БЦ в АДВС. 

Такая методика может быть применена после соответствующей адаптации для различных 
ответственных РС в АДВС и других ИМ.  

Обоснование полученых результатов. Таким образом, силы, действующие в АДВС 
при его работе, вызывают в РС ГБЦ с БЦ колебания, состоящие из ряда гармоник. Одной из 
важнейших возможных причин раскрытия стыка в рассматриваемом случае является 
возникновение резонанса из–за совпадения частоты собственных колебаний РС с одной из 
гармоник возмущающей силы. Вероятность такого раскрытия и отказа АДВС 
пропорциональна амплитуде колебаний и массе ГБЦ. У современных АДВС, абсолютное 
большинство которых имеет четыре клапана на каждый цилиндр, масса ГБЦ вместе с двумя 
распределительными валами и другими узлами и деталями, установленными на ней, 
существенно возросла в сравнении с двухклапанными конструкциями и является 
сопоставимой с массой БЦ, что непосредственно приводит к снижению надежности РС и 
раскрытию стыка. АДВС с двухклапанными ГБЦ также подвержены релаксации РС, 
вызывающих раскрытие стыка. При затяжке группового РС головки блока цилиндров (ГБЦ) 
с блоком цилиндров (БЦ) двигателей ЗМЗ–405, ЗМЗ–406 рекомендуемым моментом 120±10 
Н×м, после 2000 км пробега ослабление затяжки отдельных резьб составляет 20–35%, что 
приводит к отказам до 30% двигателей, находящихся в эксплуатации, в течение 
гарантийного срока. Установлено, что одной из главных причин релаксации и отказов РС в 
рассматриваемых двигателях являются высокие тепловые нагрузки, вызывающие 
деформацию ГБЦ, выполненной из сплава АЛ–10В. После увеличения момента затяжки РС 
на 10% до 132 Н×м и снижения разброса момента затяжки до ±5% за счет применения 
гайковерта с интеллектуальной системой управления, количество отказов снизилось на 50%, 
объем выборки составил 14 единиц. 

Для оценки распределения напряжений и перемещений в РС ГБЦ с БЦ было 
выполнено конечно–элементное моделирование, по методике [6]. Для наглядности на 
рисунке представлена четверть одного болта, входящего в исследуемое РС. 

Из анализа результатов конечно–элементного моделирования видно, что напряжения 
в деталях исследуемого РС при максимальных заданных значениях нагрузок, возникающих 
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ANALYSIS OF FACTORS, DEFIANTED RELAXATION  

AND DESTRUCTION OF THE THREADED CONNECTIONS  
IN WARES OF ENGINEER 

 
Abstract. The influence of factors causing relaxation and destruction of highly loaded critical M6... M20 

threaded joints in modern machine–building products is considered. A mathematical model is proposed that illustrates 
the relationship between operational loads and failures of threaded joints. 

Keywords: thread, threaded connection, relaxation, failure, reliability. 
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УДК 629.114.4 
 

Ю.Н. БАРЫШНИКОВ  
 

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАЗГРУЗКИ  
АВТОМОБИЛЯ–САМОСВАЛА 

 
Аннотация. Разработана математическая модель разгрузки автомобиля–самосвала. До начала 

движения (разгрузки) груза подъем платформы рассмотрен как квазистатический процесс. Из уравнений 
равновесия и геометрических соотношений получены аналитические выражения для расчета силового 
взаимодействия платформы и рамы автомобиля. При движении груза как монолитной глыбы 
математическая модель построена на основе уравнений Лагранжа в виде системы дифференциальных 
уравнений. После принятия ряда допущений ее решение удалось существенно упростить. Предложен 
алгоритм решения задачи, реализующий метод пошагового изменения параметров.  Приведены результаты 
расчета усилий в гидроцилиндрах при разгрузке карьерного самосвала БелАЗ. 

Ключевые слова: автомобиль–самосвал, математическая модель, разгрузка, нагрузки. 
 
Введение. 
Определение расчетных нагрузок является важной составной частью прочностного 

анализа любой конструкции. Во многих областях техники этому вопросу уделяется большое 
внимание. Так, например, для самолетов, судов, железнодорожных вагонов и вагонов метро 
установлены основные нагрузочные режимы и разработаны методики расчета нагрузок, 
которые утверждены соответствующими нормативными  документами. В автомобильной 
промышленности таких нормативов пока нет. Такое положение можно объяснить как 
многообразием нагрузочных режимов, так и сложностью расчета действующих нагрузок.  

Одним из таких режимов является наезд автомобиля на неровности дороги. Решению 
указанной задачи в линейной постановке посвящены работы целого ряда авторов [1]–[4]. В 
нелинейной постановке, т.е. с учетом нелинейности подвесок и шин, расчет реакций от 
подвески на раму карьерных самосвалов рассмотрен в статье [5]. 

Кроме указанного режима, к основным расчетным случаям для автомобилей–
самосвалов можно  отнести разгрузку грузовой платформы. Опыт показывает, что  
самосвалы в течение суток могут совершать более двадцати погрузочно–разгрузочных 
операций, а за весь период эксплуатации – свыше десяти тысяч. Это может явиться одной из 
причин разрушения их несущей конструкции [6]. Вот почему расчет силового 
взаимодействия платформы и рамы в процессе разгрузки самосвала представляет особый 
интерес. 

Основная часть. 
Попытка численного моделирования процесса разгрузки самосвала сделана в работе 

[7]. Однако в ней рассмотрена упрощенная модель, полученная на основе принципа 
Даламбера. Понятно, что дальнейшее изучение силового взаимодействия платформы и рамы 
самосвала требует создания более совершенных математических моделей. 

Обычно процесс разгрузки состоит из двух этапов. На  первом этапе груз остается 
неподвижным.  На втором этапе  движение груза начинается при подъеме платформы на 
угол естественного откоса и заканчивается ее полной разгрузкой.  

Рассмотрим подъем платформы с неподвижным грузом. Обычно время подъема 
платформы составляет от 20 до 30 сек., при этом угловая скорость поворота платформы мала 
и составляет всего 0,03–0,05с–1. Поэтому подъем платформы с неподвижным грузом можно 
рассматривать как квазистатический процесс. 

На рисунке 1 представлена расчетная схема автомобиля–самосвала при разгрузке. 

Обозначим 1m и 2m – масса платформы 1 и груза 2;   – угол наклона платформы;   
  – угол наклона гидроцилиндра; s  – перемещение груза; )  ,( кYкX и , )y ,( ккx 1,2)( к

– координаты центра масс платформы  и груза  в неподвижной OXYZ   и в подвижной Oxyz

системе координат соответственно. 
До начала движения груза, а также в случае его прилипания (примерзания),  усилие 

гидроцилиндра F найдем из условия равенства нулю суммы моментов всех сил 
относительно точки О. 
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результаты расчетов указанных нагрузок при разгрузке карьерного самосвала БелАЗ. 
Полученные результаты могут быть использованы как в расчетах на прочность несущей 
системы автомобилей–самосвалов, так и при проектировании гидроцилиндров 
опрокидывающих механизмов.  
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MATHEMATICAL MODEL OF THE UNLOADING CAR–TRUCK 
 

Abstract. A mathematical model of unloading a dump truck is developed. Before the movement (unloading) of 
cargo, the lifting of the platform is considered as a quasi–static process. From the equations of equilibrium and 
geometric relationships, analytical expressions are derived for calculating the force interaction between the platform 
and the car frame. When the cargo moves as a monolithic block, the mathematical model is constructed on the basis of 
the Lagrange equations in the form of a system of differential equations. After the adoption of a number of assumptions, 
its solution was substantially simplified. An algorithm for solving the problem is proposed that implements the method 
of incremental change of parameters. The results of calculation of forces in hydraulic cylinders during unloading of 
BelAZ mining dump truck are given. 

Keywords: dump truck, a mathematical model, unloading, loading. 
 

BIBLIOGRAPHY 
 

1. Erz, K. Uber die durch Unebenheiten der Fahrbauhn hervorgerufene Verdrehung von Strassenfahrzeugen. / 
K. Erz // Automobilltechnik Z. – 1957. – Bd.59. – № 4. – P. 89–96. 

2. Pavlovskiy, YA. Avtomobilnyye kuzova / YA. Pavlovskiy: per. s polsk., M.: Mashinostroyeniye, 1977. – 544 s. 
3. Teser, Ye. Kuzova bolshegruznykh avtomobiley / Ye. Teser: per. s polsk., M.: Mashinostroyeniye, 1979. – 232 s. 
4. Baryshnikov, YU.N. Ekspress–analiz nagruzok pri nayezde avtomobilya na nerovnosti dorogi / YU.N. 

Baryshnikov // Nauka i obrazovaniye, MGTU im. N.E. Baumana, Elektron. zhurn. – 2014. – №.8. – S. 224–236. 
5. Baryshnikov, YU.N. Povysheniye dolgovechnosti nesushchikh sistem avtomobiley–samosvalov osobo 

bolshoy gruzopod"yemnosti / YU.N. Baryshnikov, E.I. Grigolyuk, L.G. Sukhomlinov // Avtomobilnaya 
promyshlennost. – 1986. – № 8. – S.15–16 

6. Belokurov, V.N. Avtomobili–samosvaly / V.N. Belokurov, O.V. Gladkov, A.A. Zakharov, A.S. Melik–
Sarkisyants. – M.: Mashinostroyeniye, 1987. – 216 s.  

7. Baryshnikov, YU.N. Chislennoye modelirovaniye protsessa razgruzki karyernykh samosvalov / YU.N. 
Baryshnikov // Yestestvennyye i tekhnicheskiye nauki. – 2015. – №11(89). – S.57–59. 
 
Baryishnikov Yuriy Nikolaevich 
Moscow State Technical University. NE Bauman, Moscow 
Candidate of Technical Sciences, associate professor of the department «Theoretical Mechanics»  
them. Prof. N.E. Zhukovsky 
E–mail: mhts@list.ru 
 



Секция «Технологии и инструменты» 

86 ______________________________________________________________________ № 4-1 (324) 2017 

ТЕХНОЛОГИИ И ИНСТРУМЕНТЫ 

 
УДК 656.61.08 

 
А.Ю. ГАРШИН, М.С. КАПУСТЯНСКИЙ 

 
СРАВНИТЕЛЬНАЯ ОЦЕНКА ЭФФЕКТИВНОСТИ ДЕЙСТВИЙ 

ЭКИПАЖА СУДНА ПО ИСПОЛЬЗОВАНИЮ СИСТЕМ ОБЪЕМНОГО 
ТУШЕНИЯ ПОЖАРОВ РАЗЛИЧНЫХ ТИПОВ 

 
Аннотация. В рамках функциональной структурной теории разработаны алгоритмы действий 

экипажа аварийного судна по использованию системы объемного химического тушения (ОХТ) пожара 
составом БФ–2 (смесь бромистого этила 73 %) и по использованию системы тушения подобного пожара 
тонкораспыленной водой. Эффективность таких алгоритмов в различных условиях их выполнения оценена в 
вероятностных показателях безошибочности и времени по разработанной автором методике. Сравнение 
этих количественных показателей дало возможность провести анализ, выбор и обоснование практических 
путей совершенствования организационно–технических мероприятий по обеспечению 
взрывопожарозащищенности судна при использовании рассмотренных систем объемного тушения.  

Ключевые слова: объемное пожаротушение, объемное химическое тушение, легкоиспаряющиеся 
жидкости, алгоритм действий, граф–модель, тонкораспыленная вода. 

 
Введение. 
Несмотря на многие недостатки, система ОХТ на судах торгового флота остается 

наиболее эффективным из имеемых средством тушения больших объемных пожаров. 
Однако, как показывает статистика, довольно часто приказ на ее использование 
руководитель тушения пожара отдает слишком поздно по ряду причин, среди которых 
можно отметить: 

- высокую ответственность за безопасность подчиненных и неуверенность в том, что 
весь личный состав покинул аварийное помещение, что ведет к дополнительной 
перепроверке докладов командиров аварийных партий, старшего механика и др.; 

- значительное время, необходимое на герметизацию аварийного помещения (АП) и 
проверку качества её выполнения; 

- возможность материальной, административной и юридической ответственности за 
неправильно принятое решение. 

Вместе с тем, существуют новые способы тушения таких пожаров, лишенные 
недостатков, присущих тушению с использованием паров легкоиспаряющихся жидкостей. 
Одним из них является способ тушения пожаров тонкораспыленной водой [1]. При этом 
возможно снижение времени тушения, отпадает необходимость полной герметизации 
аварийного помещения, вывод членов экипажа из помещения перед включением системы 
становится необязателен и включение системы возможно сразу после подготовки ее к 
действию. Кроме того, огнегаситель дёшев, доступен для пополнения, экологически 
безопасен, не выводит из строя оборудование отсека. 

Основная часть. 
Ниже дана сравнительная оценка эффективности тушения объемного пожара в МО с 

использованием системы ОХТ и системы тушения тонкораспыленной водой по 
разработанной методике 2 с учетом предложенного принципа упреждения по 
использованию средств пожаротушения в показателях безошибочности и времени. Сущность 
методики заключается в разработке формализованного описания действий экипажа 
поврежденного судна в виде графа работ, задания характеристик безошибочности, времени 
выполнения действий и поэтапного пересчета этих характеристик при укрупнении графа 
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работ до вычисления выходных показателей безошибочности и времени, затрачиваемых на 
решение задачи борьбы за живучесть (БЗЖ). В конечном итоге принимается вариант 
алгоритма действий (АД) с лучшими показателями. 

Разработанная семантическая структурно–логическая граф–модель действий (АД–1) 
экипажа поврежденного судна по ликвидации пожара системой объемного химического 
тушения с учетом опыта руководства БЗЖ представлена на рисунке 1.  

 
 

1. Вывод из действия тех-
нических средств АП 

2. Вывод вахтенных из АП, 
доклад  на ГКП 

3. Герметизация АП 

6. Подготовка к включению 
системы 

7. Подача огнегасителя в АП, 
доклад на ГКП 

12.Вскрытие, осмотр АП 
 

11. Выдержка 
20 минут 

4.Контроль 
герметизации 

АП 

10. Проверка гермети-
зации и повторный пуск 
системы ОХТ 

Рисунок 1 - Структура АД–1 

5. Герметизация вручную 
незакрывшихся захлопок 

9. Контроль снижения 
температуры в АП 

8. Выдержка 
10 минут 

101 

102 

103 

104 

105 

 
Здесь – 1, 2, 3, 5, 6, 7, 10, 12 – рабочие операции; 4 – функциональный контроль; 8, 11 

– задержки действий; 9 – диагностический контроль (контроль снижения температуры в АП). 
Математический аппарат для расчета показателей выполнения этих блоков операций 
изложен в 3. 
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Характеристики операций (действий) оцениваемого алгоритма действий определены и 
обоснованы по разработанной методике 2 для типовых случаев БЗЖ в объективных 
количественных показателях безошибочности и времени и представлены в виде таблице 1. 
Оценена степень влияния на эти показатели опасных факторов пожара. 

Расчет выполнен для различных состояний рабочей среды (РС) (условий деятельности 
экипажа при БЗЖ): 

- относительно комфортной (на судне объявлена учебная тревога, проводится 
тренировочное учение); 

- сверхэкстремальной (судно терпит бедствие). 
При этом, рассчитанными поправочными коэффициентами в соответствии с 

разработанной методикой скорректированы характеристики безошибочного выполнения 
всех операций АД и значения характеристик времени выполнения этих операций.  

 

Таблица 1 – Характеристики операций АД экипажа поврежденного судна по тушению 
пожара в МО системой ОХТ в соответствии с действующей организацией (АД–1) 

Номер и наименование 
операции (действия) 

Характеристики безошибочности Бi и 
времени mi (мин) действий 

1 – РО Б1=0,90; m1=5; 
2 – РО Б2=0,99; m2=2; 
3 – РО Б3=0,90; m3=5; 
4 – ФК Ф4

11=0,90; Ф4
00=0,90; m4=3; 

5 – РО Б5=0,95; m5=3; 
6 – РО Б6=0,90; m6=3; 
7 – РО Б7=0,90; m7=1; 
8 – ЗД Б8=0,99; m8=10; 
9 – ДК Д9

11=0,85; Д9
00=0,85; m9=3; 

10 – РО Б10=0,90; m10=3; 
11 – ЗД Б11=0,99; m11=15; 
12 – РО Б12=0,9; m12=2; 

 

В результате АД–1 представлен единичным блоком с набором показателей 
эффективности действий, представленных в таблице 2. 

 

Таблица 2 – Оценка показателей эффективности действий по АД–2 в зависимости от 
уровня РС 

Вероятность безошибочного 
выполнения АД 

Уровень РС 
М.о. времени 

выполнения АД (мин) 
0,59 Относительно комфортная 63 
0,42 Сверхэкстремальная 88 

 

Усовершенствованный АД–2 с учетом применения рассмотренных выше 
организационно–технических решений представлен на рисунке 2. Нумерация операций 
(действий) и их содержание сохранено, изменена структура АД. Операции 4, 5, 6, 8, 11 
исключены за счет применения новой системы тушения тонкораспыленной водой. 

Рассчитанные подобным образом показатели эффективности действий вариантов 
АД–2 в зависимости от уровня РС даны в таблице 3. 

 

Таблица 3 – Показатели эффективности действий вариантов АД–2 в зависимости от 
уровня РС 

Вероятность безошибочного 
выполнения АД 

Уровень РС 
М.о. времени 

выполнения АД (мин) 
0,79 Комфортная 28 
0,62 Сверхэкстремальная 41 
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1. Вывод из действия тех-
нических средств АП 

2. Вывод ч/э из АП, доклад 
на ГКП 

3. Герметизация АП 

7. Подача огнегасителя в АП, 
доклад на ГКП 

12.Вскрытие, осмотр АП 

10. Проверка гермети-
зации и повторный пуск 
системы 

Рисунок 2 -  Усовершенствованный АД–2 

9. Контроль снижения 
температуры в АП 

101 

102 

 
 

Сравнивая показатели таблиц 2 и 3, видно, что выигрыш по безошибочности 
выполнения АД составляет 20%, а выигрыш по времени в тренировочных условиях 35 минут 
(56%) и 47 минут (53%) в сверхэкстремальных аварийных условиях. 

Таким образом, второй вариант АД–2 предпочтительнее и применение отмеченных 
организационных и технических решений оправдано, хотя в сверхэкстремальных условиях 
эффективность выполнения АД–2 недостаточна.  

Заключение. 
Новизна полученного научного результата заключается в том, что детальные АД и 

количественная оценка их эффективности разработаны впервые. При этом новым является 
как форма представления действий в удобном структурном и обозримом виде, так и 
возможность оценки эффективности решения задачи экипажем судна в ясных объективных 
показателях безошибочности и времени.  

Обоснованность научного результата подтверждена чувствительностью показателей 
эффективности АД при изменении как исходных характеристик безошибочности и времени, 
так и структур АД. Показатели эффективности выполнения АД с принятыми 
организационно–техническими усовершенствованиями выше показателей эффективности 
действий в соответствии с существующей организацией в рассмотренных ситуациях БЗЖ.  

Практическая значимость научного результата состоит в сокращении потока ошибок 
и времени решения задач БЗЖ корабля, использование разработанных АД для 
совершенствования подготовки специалистов морского флота по живучести.  
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COMPARATIVE EVALUATION OF THE EFFECTIVENESS 
OF THE SHIPS CREW ON USING THE SYSTEM VOLUME 

EXTINGUISHING OF FIRES OF VARIOUS TYPES 
 

Abstract. In the framework of the functional structural theory, algorithms for the crew of the emergency vessel 
to use the BF–2 fire–fighting system (bromine–ethyl mixture of 73%) and the use of a fire extinguishing system for fine 
dust with water were developed. The efficiency of such algorithms under various conditions of their implementation is 
estimated in probability indicators of error and time according to the method developed by the author. Comparison of 
these quantitative indicators made it possible to analyze, select and justify practical ways to improve the organizational 
and technical measures to ensure the explosion–proofing of the vessel when using the discussed systems of volumetric 
quenching. 

Keywords: volumetric fire extinguishing, volumetric chemical quenching, volatile liquid, action algorithm, 
graph–model, fine–dispersed water. 
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При довольно высокой температуре конечного поглотителя, и, как следствие, малого 
температурного напора, коэффициент теплопередачи таких аппаратов довольно низкий, что 
определяет значительные требуемые площади теплообменника. Возникает необходимость 
разработать метод интенсификации теплоотдачи в указанных условиях. 

Необходимо, чтобы интенсификация теплоотдачи достигалась сравнительно простыми 
средствами, и исключалось отрицательное влияние на персонал и окружающую среду. 

Основная часть. 
Известны исследования по улучшению теплоотдачи за счет подачи воздуха в 

вертикальные цилиндрические каналы, вертикальные колонки и в каналы различной формы, 
используемые в химической промышленности [1].  

Значительная часть исследований касается движения в жидкости паровых пузырей и 
соответствующему влиянию на теплообмен. Изучение теплоотдачи в неподвижной жидкости 
при подаче через нее газа выполнено в работе [2]. В соответствии с приведенными данными 
коэффициент теплоотдачи не зависит от высоты поверхности, т.е. имеет место 
автомодельность процесса.  

Однако, указанные выше публикации не могут быть применены к расчету теплоотдачи 
в рассматриваемом нами теплообменнике, т.к. они отличаются по граничным условиям. 
Поэтому необходимо проведение исследований указанной системы с учетом всех ее 
особенностей. 

Как отмечалось, теплоотдача конечному поглотителю в пластинчатых погружных 
теплообменных аппаратах осуществляется при свободной конвекции. Это наиболее 
неблагоприятный для таких теплопередающих устройств режим работы. Оребрение 
наружной поверхности теплообменного аппарата (ТОА) существенно ухудшает его 
массогабаритные показатели и приводит к резкому увеличению стоимости и сложности 
очистки от загрязнения.  

В результате всестороннего анализа данного вопроса предлагается интенсификацию 
теплоотдачи от рабочей поверхности пластинчатого погружного ТОА конечному 
поглотителю осуществлять посредством формирования у поверхности теплообмена 
затопленной газожидкостной струи [3]. Используемый при этом сжатый газ и, в частности 
воздух, является довольно распространенной средой. 

На рисунке 1 представлена схема погружного пластинчатого теплообменного 
аппарата с интенсификацией теплоотдачи конечному поглотителю затопленными 
газожидкостными струями. Горячая пресная вода, проходя через впускной коллектор 1, 
подается внутрь каждой теплообменной пластины 5. Двигаясь внутри ее по лабиринтному 
каналу, пресная вода отдает теплоту забортной воде и поступает в выпускной коллектор 2. 
Для формирования затопленной газожидкостной струи 3 в нижней части теплообменных 
пластин устанавливается газовый коллектор 4 с выполненными по длине отверстиями, через 
которые осуществляется подвод воздуха.  

Подымающиеся пузырьки воздуха проталкивают жидкость вдоль поверхности 
теплообмена, одновременно подсасывая холодную жидкость из окружающего пространства 
(рисунок 2). Кроме того, известно, что пузырьки воздуха совершают поперечные 
колебательные движения, в результате чего происходит турбулизация потока жидкости. За 
счет поперечных колебательных движений пузырьки внедряются в пристенный пограничный 
слой, разрушая его, и тем самым резко способствуя увеличению теплоотдачи. 

Проведенные теплотехнические исследования на одиночной поверхности показали, что 
теплоотдача при малых температурных напорах ( Ct – зt )   2 °С может быть увеличена в 
20…30 и более раз. Чем меньше температурный напор, тем выше эффект интенсификации 
теплоотдачи (рисунок 3).  

При температурном напоре Ct – зt  > 16…18 °С интенсификация теплоотдачи, по 
сравнению со случаем свободной конвекции, достигает 5…8 раз. Для одиночной пластины 
получены уравнения подобия. Однако, эти уравнения не могут быть применены для расчета 
теплоотдачи в рассматриваемом нами пластинчатом ТОА. 

С целью выявления характера течения жидкости и влияния на него различных 
факторов были проведены визуальные исследования на прозрачной модели. Она 
представляла собой прямоугольную емкость 1,0x0,5 метра, одна из стенок которой была 
выполнена прозрачной. Емкость заполнялась водой, содержащей тушь, серебрин и 
поверхностно–активное вещество. Воздух подавался через трубку с выполненными по длине 
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20…30 раз. Причем, большим значениям соответствуют меньшие температурные напоры 
между поверхностью аппарата и водой.  

2. Эксперименты на модели с прозрачной стенкой и визуализацией течения показали, 
что угол раскрытия газожидкостной струи составляет 22…25°. Снизу, по ее наружной 
свободной поверхности, происходит подсос жидкости  из окружающего пространства и ее 
проталкивание вверх между пластин. Газожидкостная струя сначала формируется как 
неограниченная осесимметричная, а затем, развиваясь, зажимается с двух сторон 
теплообменными поверхностями. 

3. Газожидкостная струя подсасывает холодную жидкость из окружающего 
пространства и проталкивает ее вдоль теплоотдающей поверхности. Движущиеся пузырьки 
газа дополнительно турбулизируют жидкость в струе и разрушают пристенный пограничный 
слой. Увеличение зазора H  между теплообменными поверхностями свыше некоторого 
значения не ведет к существенной интенсификации теплоотдачи.  
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ПОВЫШЕНИЕ КАЧЕСТВА ДЕТАЛЕЙ 
ПРИ КРУГЛОШЛИФОВАЛЬНОЙ ОБРАБОТКЕ 
В УСЛОВИЯХ ПЛАВУЧИХ МАСТЕРСКИХ 

 
Аннотация. В статье рассмотрены результаты лабораторных исследований процесса шлифовальной 

обработки с учетом оценки качества поверхностей шеек валов при возмущающих вибрационных воздействиях 
на оборудование внешних сил, являющихся следствием морского волнения, а также соседнего работающего 
оборудования в условиях плавучей мастерской. Определены  изменения погрешности формы  обрабатываемых 
деталей, шероховатости обрабатываемой поверхности, волнистости поверхностей шеек валов по базовому и  
достигнутому вариантам с учетом использования новых конструкций эффективных виброизолирующих опор и 
устройств. 

Ключевые слова: плавучая мастерская, шлифовальный станок, процесс шлифовальной обработки, 
погрешность формы, шероховатость поверхности, волнистость, виброизолирующая опора. 

 
Введение.  
Для промышленности приморских городов характерно наличие таких мобильных 

мини–заводов, как плавучие мастерские и рейдовые плавучие мастерские с размещенными на 
палубах производственными участками, в том числе и механообрабатывающими, имеющими 
широкий спектр станочного оборудования, включая шлифовальные станки. Такие мастерские 
способны выполнять сложные работы по изготовлению и модернизации 
высокотехнологичных изделий, узлов и агрегатов в удалённых от основных пунктов 
базирования районах. Особенностью эксплуатации указанного оборудования является наличие 
вибраций, вызванных воздействием на него различных источников, снижающих точность и 
повышающих шероховатость обрабатываемых поверхностей в ходе технологического 
процесса [1]. 

Основная часть.  
Повышение качества обработки деталей в условиях плавучих мастерских  

непосредственно связано с необходимостью уменьшения вынужденных колебаний станка, 
передаваемых через поверхность палубы от внешних источников, в том числе и от 
воздействий внешней среды – волнений водной поверхности. 

Как правило, на палубах  плавучих мастерских  фиксация станков обеспечивается 
фундаментом, который не обеспечивает достаточной виброизоляции вследствие значительных 
внешних колебательных воздействий, которые до настоящего времени являются 
малоизученными и их влияние на качество обработки, особенно на финишных операциях, 
усложненных колебательными процессами разного уровня, не исследовалось.   

В работах [2, 3] выполнено моделирование взаимодействия инструмента и 
обрабатываемой заготовки в условиях плавучих мастерских. Рассмотрена  динамическая 
система со сложными стационарными и нестационарными вибрационными воздействиями,  а 
также ударными воздействиями от внешнего оборудования и длительного морского волнения 
через плавучее основание и поверхность палубы.  

На основе системного подхода предложена структура операции, сформулированы 
основные положения и методы анализа процесса; определены входные, выходные переменные 
и параметры состояния каждой из подсистем.  

Исследованию процессов шлифования шеек валов с целью определения параметров 
качества обрабатываемых поверхностей, получаемых при различных уровнях внешних 
воздействий в производственных условиях (рисунок 1) и на экспериментальном стенде 
(рисунок 2) в лаборатории посвящены работы [4, 5]. На основе морфологического анализа и 
синтеза структур виброизолирующих устройств  построена морфологическая матрица, 
рассмотрены признаки и характеристики подсистем и элементов, выявлены связи между ними. 
Синтезированы варианты структур виброизолирующего устройства с учетом существенных 
признаков и технических требований, определяющих свойства системы. Выполнена 
структурно–компоновочная оптимизация виброизолирующих устройств. Параметрический 
синтез, теоретические и экспериментальные исследования реальных конструкций 
виброизолирующих устройств привели к созданию нового виброизолирующего устройства 
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преимущества разработанных в данной работе мероприятий  и методики по синтезу 
рациональных вариантов виброизолирующих устройств. 

Таким образом, виброизолирующие опоры (рисунок 3, б) по патенту UA 36389 в 
процессе проведенных испытаний подтвердили достижение поставленной цели – повышение 
качества шлифования при работе в условиях плавучей мастерской. Однако в представленных 
для испытаний образцах опор для использования их в плавучей мастерской необходимы 
некоторые элементы крепления, так как  находящееся на палубах плавучих мастерских 
технологическое оборудование подвергается опасности смещения из–за отрыва основания 
опоры от поверхности палубы. Для этого их необходимо надежно фиксировать с помощью  
рычажной системы на стойке и оснащать гидроцилиндром с пружинным аккумулятором. 
Такие адаптированные к условиям плавучих мастерских виброизолирующие устройства 
(патент UA 51621) [7], созданные  на базе испытанных в лабораторных условиях опор, 
обеспечивают повышение качества шлифовальной обработки деталей за счет снижения 
погрешностей их формы, уменьшения шероховатости и волнистости путем снижения 
уровней внешних и внутренних колебаний, гашению которых способствуют 
виброизолирующие опоры и пружинные аккумуляторы в гидроцилиндрах. Кроме того, 
возможна дальнейшая модернизация указанных устройств с целью создания систем 
автоматической виброзащиты и виброизоляции шлифовальных и других прецизионных 
станков, способных по сигналам от вибродатчиков менять демпфирующие свойства 
виброопор в процессе механической обработки деталей в условиях плавучих мастерских. 

Заключение.  
Такой подход позволил экспериментально исследовать влияние на качество деталей 

при шлифовальной обработке морского волнения, воздействующего на плавучее основание 
мастерской, выявил целесообразность использования новой виброзащитной системы станка 
для  решения задач обеспечения динамической стабилизации процесса шлифования [1,2] и 
создания конструкций эффективных виброизолирующих опор и устройств. Предложенные 
конструкции виброизолирующих опор и устройств упрощают возможность монтажа и 
демонтажа технологического оборудования, способствуют повышению качества обработки 
деталей за счет снижения погрешностей их формы путем уменьшения внешних 
колебательных воздействий. Полученные результаты являются основой для дальнейших 
экспериментальных исследований  параметров и характеристик технологической системы 
круглошлифовального станка в условиях плавучей мастерской [6, 7]. Кроме предложенных 
выше мероприятий в условиях плавучих мастерских возможно применение высокоточных 
станков с ЧПУ, оснащенных системами адаптивного управления, построенных на основе 
разработки новых моделей оптимальных систем со стохастическим регулятором процесса. 
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INCREASING THE QUALITY OF DETAILS 

IN THE ROUND–GRINDED TREATMENT UNDER 
THE CONDITIONS OF THE FLOATING WORKSHOP 

 
Abstract. The article describes the results of laboratory studies of the grinding processing process are given 

taking into account the evaluation of the quality of the surfaces of the shafts of the shafts with disturbing vibrational 
influences on the equipment of external forces that are the consequence of sea waves, as well as the neighboring 
operating equipment in a floating workshop. The changes in the error in the shape of the machined parts, the roughness 
of the machined surface, the waviness of the roll neck surfaces according to the basic and achieved variants are 
determined taking into account the use of new designs of effective vibration isolating supports and devices. 

Keywords: floating workshop, grinding machine, grinding process, shape error, surface roughness, waviness, 
vibration isolating support. 
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УДК 629.33 
 

З.А. ГОДЖАЕВ, А.Ю. ИЗМАЙЛОВ, Л.А. МИХОЛАП  
 

ПОВЫШЕНИЕ БЕЗОПАСНОСТИ И МАНЕВРЕННОСТИ 
МАЛОТОННАЖНОГО АВТОПОЕЗДА ПРИ ДВИЖЕНИИ  

 
Аннотация. В работе рассматривается устройство управления одноосного прицепа, позволяющее 

повысить маневренность, надежность и безопасность движения за счёт использования автопоезда с гибкой 
управляемой связью в сцепном устройстве. Определены максимальные усилия в тросе, крюке дышла и 
управляемых элементах сцепного устройства с максимальной загрузкой прицепа и критические радиусы 
поворота при различных скоростях движения и коэффициентах сцепления. Выполнено математическое 
моделирование движения автопоезда. Устройство испытано на базе автомобиля Газель 2705 с прицепом 
ИАПЗ–739. Проведены натурные испытания в различных городских и полевых условиях. Описанная 
математическая модель, позволяющая оценить критические радиусы поворота при маневрировании, условия 
экстренного торможения и возможность движения задним ходом. На основании анализа сформулированы 
рекомендации по использованию данного устройства. 

Ключевые слова: автопоезд, надежность, маневренность, безопасность, сцепное устройство, 
гибкая управляемая связь. 
 

Введение. 
Стремительное развитие автомобильного транспорта ставит повышенные требования 

по безопасной эксплуатации малотоннажных автопоездов (МАП) в сложных дорожных 
условиях, а также перенасыщенности городских автомагистралей.  

Автопоезд представляет собой сложную техническую систему, безопасность которой 
определяется эксплуатационными качествами отдельных звеньев. Выход из строя одного из 
звеньев влечет за собой снижение безопасности движения и чаще всего приводит к тяжелым 
дорожно–транспортным происшествиям. 

Повысить маневренность малотоннажного автопоезда в составе легкового 
автомобиля–тягача высокой проходимости и одноосного прицепа при перевозке 
нестандартных, невибростойких грузов в сложных дорожных условиях, включая движение 
задним ходом возможно за счет создания специального устройства в сцепке. 

Маневренность автопоезда может характеризоваться согласно ГОСТ [3] следующими 
основными показателями: 

Минимальный радиус поворота Rmin [м], 
Внешний габаритный радиус поворота Rгн  [м], 
Внутренний габаритный радиус Rгв [м], а также габаритной полосой движения и 

маневрированием при движении задним ходом. 
В настоящее время разработано большое количество систем активной безопасности. 

Этими вопросами в основном занимались научные коллективы МАМИ и МАДИ [1, 2, 4,4].  
Указанные работы позволяют решить многие проблемы маневренности 

малотоннажных автопоездов, но характеризуются сложностью технического исполнения и 
не обеспечивают маневрирование при движении задним ходом.  

В зарубежных странах имеются устройства, нацеленные на повышение 
маневренности и устойчивости малотоннажного автопоезда. Наиболее близким из устройств, 
удовлетворяющим сформулированным выше целям, являются конструкции, описанные в 
нескольких зарубежных патентах. В них предлагаются сцепные устройства автопоездов, 
позволяющие в той или иной мере уменьшить колебания при возникновении рыскания 
прицепа. В некоторых из них используются системы пружин или гидравлических 
демпферов, связывающих прицеп с тягачом. Этих недостатков лишена предложенная в 
работе [8] и экспериментально апробированная система с гибкой управляемой связью в 
сцепном устройстве. Эта система достаточно проста, поскольку может быть собрана в 
полевых условиях, обладает высокой ремонтно пригодностью и обеспечивает 
маневрирование при движении задним ходом [7]. 

Использование МАП с таким устройством необходимо для городских нужд при 
перевозке товаров, оборудования, вывозе различных отходов, использовании а системе МЧС, 
а также обслуживании строительных, промышленных и сельхоз комплексов. Высокая 
маневренность и эксплуатационная надежность таких МАП позволяет использовать их в 
условиях боевых действий и чрезвычайных ситуаций при необходимости передвижения по 
местности со сложным рельефом и узких городских улиц [6,10]. 
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где  Vx, Vy, Vz, p, q, r – проекции скорости центра масс и угловой скорости твёрдого тела на 
оси подвижной системы координат; 

a11, a21, a31, a12, a22, a32, a13, a23, a33 – направляющие косинусы между осями подвижной и 
неподвижной систем отсчёта. 

Шесть уравнений динамики, записанных в подвижной системе отсчёта на основе 
теоремы об изменении количества движения и теоремы об изменении кинетического 
момента:  
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где  m2 – масса прицепа;  
Jx2, Jy2, Jz2, Jxy2, Jxz2, Jyz2 – компоненты тензора инерции относительно осей подвижной 

системы координат;  
Fx, Fy, Fz – составляющие реакции F фаркопа, действующие со стороны автомобиля на 

прицеп;  
Rlx, Rly, Rlz, Rrx, Rry, Rrz – составляющие усилия на левом и правом колёсах прицепа 

соответственно;  
Ml, Mr – моменты сопротивления повороту на левом и правом колёсах;  
Tlx, Tly, Tlz, Trx, Try, Trz – силы натяжения троса в сцепном устройстве в проекциях на 

подвижные оси координат соответственно на левой и правой частях троса, действующие со 
стороны автомобиля на прицеп;  

G2 – сила веса прицепа;  
xF, yF, zF, xRl, yRl, zRl, xRr, yRr, zRr, xTl, yTl, zTl, xTr, yTr, zTr – координаты точек приложения 

соответствующих сил в подвижной системе отсчёта, связанной с прицепом. 
Поверхность дороги считается плоской. Взаимодействие колёс автомобиля и прицепа 

с дорогой в вертикальном направлении описывается упруго–вязкой моделью с учётом 
возможности потери контакта. Все элементы конструкции в данной модели считаются 
жесткими (недеформируемыми). 

Основное диалоговое окно настройки параметров модели показано на рисунке 2. В 
программе предусмотрена возможность параметры системы, такие как массовые 
характеристики тягача и прицепа, состояния грунта (асфальт, грунт, сухая или влажная 
дорога и т.п.), расположение груза в прицепе, внешние воздействия (неровности или уклон 
дороги), тем самым давая возможность оценить качество маневрирования в различных 
условиях.  

На рисунке 3 показан пример моделирования движения МАП задним ходом при входе 
в поворот с управляемым тросом в сцепном устройстве и без троса. 

В результате моделирования определены критически радиусы поворота в зависимости 
от скорости МАП при различных состояниях дороги и различной загруженности прицепа 
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лаборатории КП–514МП» с автомобилем Газель 2705 с одноосным прицепом 
грузоподъемностью 1 т. 

 

Таблица 1 – Рекомендованные значения скоростей при движении передним ходом в 
зависимости от радиуса поворота для коэффициента сцепления 0,6 

Скорость движения, км/ч 
Motion speed, km/h 

Критический радиус поворота, м Critical
radius of turn, m 

10 15
20 20
30 25
40 40
50 60
60 90

 

Заключение. 
В результате проведенных исследований сформулированы выводы и  рекомендации 

по эксплуатации МАП с гибкой связью в сцепном устройстве, существенно повышающие 
маневренность и безопасность движения. 

1. При движении автопоезда передним ходом на поворотах скорости движения не 
должны превышать значений, указанных в таблице 1 в зависимости от радиуса поворота. В 
таблице указаны значения для прицепа с грузом 850 кг; при составлении рекомендаций в 
соответствии с результатами натурных испытаний значения критического радиуса поворота 
увеличены на 10%, что гарантирует надежное маневрирование. 

2. При движении задним ходом при радиусе поворота (10 –20 м) скорость не должна 
превышать 5–10 км/ч, но в экстремальных условиях устройство позволяет выполнять 
маневрирование задним ходом и при скоростях до 20 км/ч. Увеличение скорости зависит от 
прочности троса. 

3. Рекомендуется в сцепном устройстве с гибкой связью автопоезде в соответствии с 
ГОСТ использовать два типа тросов диаметром 9 мм ТК со 133 проволоками с 
металлическим сердечником или ЛК–0 с 46 проволоками с органическим сердечником 
(возможно и использование других типов тросов, если они выдерживают усилия в 4,5–5 т). 
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Z.A. GODZHAEV, A.Yu. IZMAILOV, L.A. MIKHOLAP  

 
INCREASED SAFETY AND MANEUVERABILLITY LOW–TONNAGE 

TRAINS WHEN DRIVING 
 

Abstract. This paper examines the control device single–axle trailer, which allows to increase the 
maneuverability, reliability and safety. due to the use of lorry convoy with the flexible managed connection in the 
coupling device. Determined effort in the rope, the drawbar hook and driven elements of the coupling device with the 
maximum loading of the trailer and the critical turning radii at different speeds and coefficients of adhesion. 
Mathematical simulation of motion of lorry convoy. The device is tested on the basis of Gazelle 2705 trailer IAPZ–739. 
Conducted full–scale tests in various urban and field conditions. Described mathematical model, allowing to estimate 
the critical turning radii for maneuvering, emergency braking conditions and the possibility of reversing. Based on the 
analysis, recommendations on the use of this device. 

Keywords: low–tonnage trailer, reliability, maneuverability, safety, hitch–coupling, flexible controlled 
coupler. 
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УДК 621.9+51–74 
 

В.И. ГОЛОВИН 
 

АНАЛИЗ НАДЕЖНОСТИ ЭЛЕМЕНТОВ  
ГИБКОГО ПРОИЗВОДСТВЕННОГО МОДУЛЯ  

В АВТОМАТИЗИРОВАННОМ СУДОРЕМОНТНОМ ПРОИЗВОДСТВЕ 
 
Аннотация. В статье рассмотрена задача поиска оптимальной структуры гибкого 

производственного модуля для судоремонтного производства. Представлен алгоритм решения задачи синтеза 
автоматизированного участка. Надежность синтезированной структуры исследуется с помощью 
трехмерного размеченного графа состояний системы, что позволяет учитывать функциональную, 
параметрическую надежность, а также переналаживаемость всей системы. 

Ключевые слова: надежность, автоматизированный участок, судоремонтное производство, гибкий 
производственный модуль. 

 
Введение. 
Технологические процессы в современном судоремонтном производстве, основанные 

на использовании взаимодействия различных физических явлений, характеризуются 
применением дорогостоящего оборудования, инструментов и приспособлений, стоимость 
которых переносится на стоимость продукции. В отдельных случаях при обработке 
уникальных деталей стоимость заготовок оказывается гораздо боле высокой, чем затраты на 
ее обработку. Создание технологического процесса, обеспечивающего изготовление деталей 
с заданными параметрами, в случае обработки уникальных деталей свойственному 
судоремонтному производству, требует повышения надежности технологической системы в 
целом и каждого ее элемента в отдельности. 

Основная часть. 
Анализ литературных источников [1–5] показывает, что для оценки эффективности 

выбора рационального варианта автоматизированного участка судоремонтного производства 
(АУСП) требуется рассматривать модели, описывающие технологические процессы ремонта и 
восстановления элементов системы. Участок автоматизированного производства, состоящий 
из нескольких гибких производственных модулей, обладает всеми признаками динамических 
технических систем. К таким признакам относятся следующие: 

1) модуль состоит из отдельных взаимодействующих подсистем; 
2) состояние подсистем и модуля в целом изменяются во времени; 
3) каждая подсистема и модуль в целом характеризуются текущим состоянием, 

историей развития. 
В связи с этим задача синтеза оптимальной структуры участка необходимо 

рассматривать как задачу общей теории синтеза технических систем. В общем виде задача 
синтеза оптимальной системы состоит в определении принципов ее построения P

~
, 

множества технологических элементов },1,~{~ nicc i   системы, множества связей ~ между 

элементами c~ и функций ),...,(~
1 nggg   таких, что обеспечивается максимум показателей 

оптимальности g0, т.е.  

   gcPggcP ,,,maxarg~,~,~,
~

0    
Функция g характеризует собой производственные процессы при ремонте и 

восстановлении узлов и агрегатов судов. Обобщенная модель указанного производственного 
процесса показана на рисунке 1. 

Принципы построения P
~

 системы (как и любого технологического оборудования) 
заключаются в следующем: участок судоремонтного производства представляет собой 
систему с открытыми границами, когда число составляющих системы и их вариантов заранее 
неизвестно, переход от одного варианта к другому дискретен и трудноформализуем (не 
может быть выражен функционально); множество вариантов может быть установлено только 
на основе априорной информации. Система имеет свойство терять свою функциональную 
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Блок 1 выполняет важнейший этап работы по формированию цели системы. Она 
представляет собой оптимальный (согласно выбранным критериям) конечный результат, 
который достигается вследствие работы всех остальных блоков схемы. Блок 2 постоянно 
обновляет образ конечного результата, поддерживая тем самым его актуальность и 
перспективность. Первые три блока должны вырабатывать показатель цели управления, 
который может быть: техническим заданием на новое изделие; совокупностью показателей, 
характеризующих желаемую степень усовершенствования работы электроинструмента; 
одним показателем, суммирующим частные изменения к лучшему. Перспективность цели 
определяется тем, что ее показатель формируется без учета существующих на сегодняшний 
день ограничений ресурсов. Этим характеризуется осуществляемая здесь первичная 
оптимизация. 

Оставшиеся блоки осуществляют регулирование, состоящее в том, что на вход 
подается установка в виде показателя цели управления, а устройство обрабатывает заданное 
его значение с определенными качественными характеристиками по рассогласованию и 
быстродействию в условиях действия помех. В соответствии с этой задачей формируется 
состав блоков для регулирования. В блоке 4 сравнивается образ конечного состоянии с 
достигнутым результатом. При полном их соответствии задействуется блок 2 и начинается 
новый этап развития системы. Пока этого не происходит, в блоке 2 определяется разность 
заданного и достигнутого показателей цели, которая называется показателем качества 
управления. Чем он больше, тем сильнее воздействия на блок 5, в котором формируется 
образ действия по снижению рассогласования с учетом имеющихся ресурсов, а также 
оптимальная стратегия регулирования. В блоке 6 совершается основной процесс, выводящий 
систему на новый уровень в направлении достижения цели. Как всякий процесс, он 
предваряется входом и завершается выходом, на основе которого в блоке 7 формируется 
характеристика достигнутого состояния, а в блоке 8 производится его оценка. 

При проектировании автоматизированных участков необходимо формирование 
множества структур гибких производственных модулей (ГПМ) с учетом возможности 
концентрации операций, т. е. применения широкодиапазонного высоконадежного 
технологического оборудования на базе многооперационных станков с ЧПУ, применения 
современных конструкций инструментов, приспособлений и загрузочных устройств. 

При формировании множества структур ГПМ целесообразно применять аппарат 
морфологического анализа [7], достаточно полно разработанного для решения технических 
задач, в частности проектирования станков [8], их узлов и механизмов, способов 
формообразования и т.д. 

В данном случае морфологический анализ может быть использован в качестве 
аппарата для формирования множества структур и оценки их вариантов по укрупненным 
показателям. 

Для оценки вариантов оптимальных структур необходимо рассмотреть особенности 
возникновения отказов функционирования, то есть эксплуатационную надежность ГПМ. 
Каждый элемент технологической системы может иметь различные интенсивности 
восстановления , также как и различные интенсивности отказов λ, т.е. разную надежность 
[9]. При этом более сложный элемент при одинаковом λ может иметь меньшее значение  
(меньшую надежность). Либо при одинаковом  большее значение λ, чем менее сложный 
элемент. Это необходимо учесть при выборе критериев оценки эффективности структур 
ГПМ. 

Рассматривая ГПМ как дискретную систему, примем, что элементы подсистемы 
отказывают независимо друг от друга, причем каждый элемент после отказа 
восстанавливается. Будем считать, что исходные свойства элемента восстанавливаются 
полностью, а работа, отказы и восстановление одного элемента никак не влияют на 
надежность других элементов. Моменты отказов каждого элемента образуют процесс 
восстановления, причем в силу наших предположений, эти процессы независимы. 
Обозначим через Fk(t) закон распределения времени жизни k–го технологического элемента. 
Предполагаем, что эти законы имеют непрерывную плотность fk(t) и существуют среднее 
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время жизни технологического элемента Tk и его дисперсия σk
2. 

Поскольку элементы в технологической системе ГПМ с точки зрения надежности 
соединены последовательно, то отказ любого элемента вызывает отказ всей системы. 
Появление отказов на одном участке времени не меняет вероятности появления какого–либо 
числа отказов на другом участке, не пересекающимся с первым. Из этих физических 
соображений следует, что при сделанных выше предположениях в потоке отказов ГПМ 
должно отсутствовать последействие. Кроме того, предположим, что законы распределения 
Fk(t) имеют непрерывные плотности. Отсюда следует, что функция H(t) – среднее число 
отказов – непрерывна и поток отказов ГПМ является ординарным, т.е. вероятность 
одновременного появления двух отказов ничтожна мала. 

С учетом вышеприведенных доводов технологическую систему ГПМ, рассмотрим как 
физическую дискретную систему [10], которая может находиться в состояниях S0,S1,…,Sn. 
Состояние S0 характеризует нормальное функционирование ГПМ при отсутствии каких–
либо отказов. Состояния S1,…,Sn характеризуется выходом из строя элементов системы 

вследствие потока отказов функционирования с интенсивностью λ1,…,λn. При этом i iT1 , 

где iT  – среднее время между двумя отказами функционирования элемента, мин и 

определяется следующим образом: 





m

j

j
i m

t
T

1
, 

где  jt
 
– интервал между (j–1)–м и j–м отказами; 

m – число отказов функционирования соответствующего элемента. 
Каждый элемент ГПМ подвергается восстановлению после отказа. Интенсивность 

восстановления соответственно для каждой подсистемы обозначим 1,…,n, считая при этом, 
что время восстановления, являясь случайной величиной, подчиняется закону Пуассона:  

ii T1 ,  

где  iT – среднее время восстановления (ремонта) элемента, мин; 

Для описания графа состояний технологической системы ГПМ (рисунок 3) обозначим 
вероятность её нахождения в каждом из вышеуказанных состояний P0, P1, …, Pn.  

 
 

Рисунок 3 – Размеченный граф состояний технологической системы ГПМ 
 

Состояние процесса определяется совокупностью уравнений финальных 
вероятностей: 

൞

଴ܲሺߣଵ ൅ ⋯൅ ௡ሻߣ ൌ ଵܲߤଵ ൅ ⋯൅ ௡ܲߤ௡;
ଵܲߤଵ ൌ ଴ܲߣଵ;
…
௡ܲߤ௡ ൌ ଴ܲߣ௡.

		               (1) 

Система (1) решается с помощью условия нормирования:  
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෍ ௜ܲ

௡

௜ୀ଴

ൌ 1. 

В уравнениях интенсивности   – характеризуют входящий поток – поток отказов; 
интенсивности   – выходящий поток – поток восстановлений. 

Из (1) определяем финальные вероятности: 

൞

଴ܲ ൌ ሺ1 ൅ ଵߣ ⁄ଵߤ …൅ ௡ߣ ⁄௡ߤ ሻିଵ;

ଵܲ ൌ ଴ܲ ଵߣ ⁄ଵߤ ;
…
௡ܲ ൌ ଴ܲ ௡ߣ ⁄௡ߤ .

	 

Решение полученной системы уравнений позволяет выявить наименее надежный 
элемент ГПМ. 

Технологическая система ГПМ, или дискретная система, вследствие потока 
параметрических отказов, возникающих в результате деформация инструмента, 
погрешностей позиционирования загрузочного устройства, приспособления, биения 
шпинделя станка, изменения температуры станка и элементов устройства управления теряет 
работоспособность, не обеспечивая точность обработки. 

Аналогично алгоритму определения наименее надежного элемента системы ГПМ, 
составим уравнение финальной вероятности для параметрических отказов: 

ە
ۖ
۔

ۖ
ᇱ଴ܲۓ ൌ ൫1 ൅ ᇱଵߣ ⁄ᇱଵߤ …൅ ᇱ௡ߣ ⁄ᇱ௡ߤ ൯

ିଵ
;

ܲᇱଵ ൌ ܲᇱ଴ ᇱଵߣ ⁄ᇱଵߤ ;
…
ܲᇱ௡ ൌ ܲᇱ଴ ᇱ௡ߣ ⁄ᇱ௡ߤ .

	, 

где  P0, P1,…, Pn – соответственно, вероятность работы ГПМ без параметрических отказов, 
вероятности параметрических отказов элементов ГПМ; 

λ – входящий поток – потоки отказов; 
– выходящий поток – потоки восстановлений. 
В условиях автоматизированного производства каждая из подсистем может как 

переналаживаться в различные моменты времени, так и отказывать и восстанавливаться. С 
учётом принятых ранее допущений о том, что процесс переналадки модуля является 
случайным процессом с непрерывным временем, на восьмом этапе оценки вариантов 
структур следует применить математический аппарат, основанный на теоретико–
вероятностном подходе. 

При этом в рассмотрение должны быть введены потоки передачи управляющей 
информации от устройств высшего уровня к нижестоящим и потоки запросов на 
обслуживание, поступающие от устройств нижних уровней к вышестоящим. 

Поток запросов, поступающих на обслуживание, будем называть входящим, а поток, 
образующийся на выходе устройств обслуживания верхнего уровня, выходящим. 

Функция λ(t), являющаяся локальной характеристикой переналаживаемости, 
определяет переналаживаемость подсистемы в каждый данный момент времени, т.е. 
вероятность того, что подсистема, прорабатывающая без переналадки до момента t, будет 
переналажена в последующую единицу времени (если конечно, эта единица мала). Таким 
образом, функция λ(t) есть плотность условной вероятности переналадки в момент t, при 
условии, что до этого момента элемент не переналаживался. Данную функцию можно 
определить по результатам испытаний в производственных условиях. Так как подсистемы 
модуля проходят подготовительные мероприятия, после чего начинается их эксплуатация. 
для элементов ГПМ можно принять λ(t) = λ = const. 

С учётом вышеприведенных рассуждений технологическую систему ГПМ 
рассмотрим как физическую дискретную систему [11], размеченный граф состояний которой 
представлен на рисунке 4.  

Уравнения для финальных вероятностей P0, P1, P12, P13, P123 состояний S0, S1, S12, S13, 
S123 можно представить в виде системы уравнений 
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При этом S0∑ состояние системы определяется совокупностью уравнений финальных 
вероятностей: 

ە
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۓ ஊܲሺߣଵ ൅ ⋯൅ ௡ሻߣ ൌ ଵܲߤଵ ൅ ⋯൅ ௡ܲߤ௡;

ଵܲߤଵ ൌ ஊܲߣଵ;
…
௡ܲߤ௡ ൌ ஊܲߣ௡;

ஊܲሺߣଵ
ᇱ ൅ ⋯൅ ௡ᇱߣ 	ሻ ൌ ଵܲ

ᇱ	ߤଵ
ᇱ ൅ ⋯൅ ௡ܲ

ᇱ	ߤ௡ᇱ ;

ଵܲ
ᇱ	ߤଵ

ᇱ ൌ ஊܲߣଵ
ᇱ ;

…
௡ܲ
ᇱ	ߤ௡ᇱ ൌ ஊܲߣ௡ᇱ ;

ஊܲ
ᇱᇱߣଵ

ᇱᇱ ൌ ଵܲ
ᇱᇱߤଵ

ᇱᇱ;

ଵܲ
ᇱᇱሺߣଶ

ᇱᇱ ൅ ଷߣ
ᇱᇱ ൅ ଵߤ

ᇱᇱሻ ൌ ஊܲ
ᇱᇱߣଵ

ᇱᇱ ൅ ଵܲଶ
ᇱᇱ ଶߤ

ᇱᇱ ൅ ଵܲଷ
ᇱᇱ ଷߤ

ᇱᇱ;

ଵܲଶ
ᇱᇱ ሺ	ߣଷ

ᇱᇱ ൅ ଶߤ
ᇱᇱ	ሻ ൌ ଵܲ

ᇱᇱߣଶ
ᇱᇱ ൅ ଵܲଶଷ

ᇱᇱ ଷߤ
ᇱᇱ;

ଵܲଷ
ᇱᇱ ଶߣ

ᇱᇱ ൅ ଷߤ
ᇱᇱ 	ൌ ଵܲ

ᇱᇱߣଷ
ᇱᇱ ൅ ଵܲଶଷ

ᇱᇱ ଶߤ
ᇱᇱ;

ଵܲଶଷ
ᇱᇱ ଷߤ

ᇱᇱ ൅ ଶߤ
ᇱᇱ 	ൌ ଵܲଶ

ᇱᇱ ଷߣ
ᇱᇱ ൅ ଵܲଷ

ᇱᇱ ଶߣ
ᇱᇱ

	 

Решение системы уравнений позволяет определить вероятность безотказно–
беспереналадочной работы P∑ модуля, а также вероятности соответствующих состояний. 

Для участка, состоящего из n модулей, обобщающий критерий P∑n, может быть 
определен по формуле: 

ஊܲ௡ ൌෑ ஊܲ௜

௡

௜ୀଵ

 

Если расчет S∑ и такта выпуска для синтезированных вариантов автоматизированных 
участков обычно не представляет трудностей, то определение обобщающего критерия P∑ 
требует дополнительного рассмотрения на основе экспериментальных исследований потоков 
их отказов и переналадки.  

Заключение. 
Предложенная модель позволяет достаточно полно оценить варианты ГПМ и участков 

на их основе, является основой для постановки машинных экспериментов, выявления слабых 
элементов в подсистемах, их совершенствования и проектирования системы. Для реализации 
модели на ЭВМ необходимо уточнение принятых алгоритмов, законов распределения 
случайных величин с помощью экспериментальных исследований структур модулей для 
изготовления деталей в судоремонтном производстве. 
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IN AUTOMATED SHIP–REPAIR MANUFACTURING 

 
Abstract. The article deals with the problem of searching for the optimal structure of a flexible production 

module for ship repair. An algorithm for solving the problem of synthesis of an automated site is presented. The 
reliability of the synthesized structure is investigated using a three–dimensional placed graph of states, which allows to 
take into account the functional, parametric reliability, and also the readjustment of the entire system. 

Keywords: reliability, automated site, ship repair production, flexible production module. 
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УДК 62–503.57 
 

М.С. ДЕНИСОВ 
 

АДАПТИВНАЯ СИСТЕМА УПРАВЛЕНИЯ ПРОЦЕССОМ ЛИТЬЯ  
С КРИСТАЛЛИЗАЦИЕЙ ПОД ДАВЛЕНИЕМ 

 
Аннотация. Обоснован выбор системы управления процессом литья с кристаллизацией под давлением. 

Рассмотрена возможность использования адаптивной системы управления сложным технологическим 
процессом формообразования жидкого металла под давлением. Разработана математическая модель 
процесса, которая является эталонной. Приведена блок–схема адаптивной системы управления на основе 
математического моделирования и общая структура системы управления. Отмечены технические и 
экономические преимущества от  внедрения адаптивной системы управления с эталонной моделью. 

Ключевые слова: адаптивная система управления, эталонная модель, литье с кристаллизацией под 
давлением, математическая модель, исполнительные механизмы, адаптивный регулятор. 

 
Введение. 
В современных экономических условиях для промышленных предприятий 

актуальным является внедрение новых автоматизированных технологий, которые помогут 
обеспечить выпуск конкурентоспособной продукции с минимальными затратами. 
Производство деталей методом литья с кристаллизацией под давлением характеризуется 
экономичностью расходования металла, возможностью получать детали высокой точности с 
заданными физико–механическими и эксплуатационными свойствами, при обеспечении 
оптимальных параметров работы оборудования, в частности, за счет использования 
адаптивных систем управления технологическим оборудованием, достигается значительное 
увеличение показателей энергоэффективности производства [1–3]. 

На сегодняшний день значительное количество технологических процессов литья с 
наложением давления выполняются на гидропрессовом оборудовании, которое может быть 
интегрировано с адаптивными системами управления. Особенностью гидравлических 
прессов как машин с гидравлическим приводом является наличие в цилиндрах и 
трубопроводах больших объемов рабочий жидкости, вследствие чего при их работе 
возникают динамические процессы колебания давления жидкости в гидросистеме. 
Внедрение адаптивных систем управления, способных учитывать и уменьшать динамические 
процессы колебания, позволяет добиться энергоэффективности технологических процессов и 
повышения качества выпускаемой продукции [4].  

Основная часть. 
Получение высококачественной металлопродукции достижимо на основе контроля 

параметров обработки информации и принятия решений для организации управления 
процессом. 

Модель технологического процесса литья с кристаллизацией под давлением является 
сложной. Ее параметры и структура из–за недостаточной априорной информации не 
известна, кроме того, параметры изменяются во время протекания технологического 
процесса, поэтому обычные системы управления не могут обеспечить качественного 
управления такими технологическими процессами [5]. 

Исходя из вышесказанного, в работе ставится задача разработки адаптивной системы 
управления.  

Так как в данную систему управления, для изучения объекта, никаких специальных 
сигналов не подается, то разрабатываемая система управления являться беспоисковой. 
Кроме того, данная адаптивная система управления будет содержать динамическую модель 
системы, обладающую требуемым качеством, т.е. эталонную модель (рисунок 1).  

Адаптивная система управления с эталонной моделью (ЭМ), кроме основного 
контура, содержащего регулятор (Р) и объект (О), включает контур с  ЭМ и 
преобразовательно–исполнительное устройство (ПИУ). Эталонная модель вырабатывает 
желаемый (эталонный) выходной сигнал [6]. 

В качестве эталонной модели выступает разработанная математическая модель в 
среде MATLAB с использованием пакета расширения Simulink и отображает логику работу 
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M.S. DENISOV 
 

ADAPTIVE SYSTEM OF CONTROL OF THE PROCESS OF CASTING 
WITH CRYSTALLIZATION UNDER PRESSURE 

 
Abstract. the choice of the process control system of casting with crystallization under pressure. Possibility of 

use of adaptive control systems of complex technological process of shaping liquid metal under pressure. The 
mathematical model of the process, which is the reference. The following is the block diagram of adaptive control 
system based on mathematical modelling and the General structure of the control system. These technical and economic 
advantages of implementing an adaptive control system with reference model. 

Keywords: adaptive control system, reference model, casting with crystallization under pressure, mathematical 
model, actuators, adaptive controller. 
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деформациях не могут уменьшаться. Их уменьшение связано с аппроксимацией начального 
пластического участка диаграммы Р– окружностью. Напряжения при  =0,0165, т.е. в точке 

«В» равны  89012,1s  МПа, где 12,1  относительные касательные 

напряжения при 5,1 . Таким образом, найдена точка «В» конца второго криволинейного 
пластического участка диаграммы. В основу построения третьего прямолинейного участка 
можно положить результаты экспериментов по испытаниям проволоки на разрыв. Модуль 
упрочнения при значительных пластических деформациях П имеет малое значение и 

составляет П=1500 МПа. При сдвиговых деформациях 877
3


П

G МПа. Поэтому 

приращение напряжений после точки «В» при дополнительной деформации =0,01 будет 
равно 7,887701,0  G МПа. Таким образом, определены координаты третьей 

точки «С» ( =0,0265,  =1005 МПа). Промежуточные значения на криволинейном участке 
SB определяются аналогично. Очевидно, что из–за малого значения модуля упрочнения 
третий участок можно считать горизонтальным, но при расчетах методом конечных 
элементов его легко учесть. 

Известно , что с увеличением температуры модуль упругости и предел текучести 
уменьшаются, причем заметное уменьшение начинается после 250…300С. Термоосадка 
происходит при температуре 380…400С. При этой температуре коэффициент уменьшения 
модуля сдвига составляет КG = 0,909, а предела текучести К = 0,814. 

725814,0890400   Kss МПа,  
44400 1034,7909,01007,8  GKGG МПа, 

00988,0
1034,7

725
4400

400
400 




G
s

s




,  

где  400 s , 400G , 
400
s , предел текучести, модуль сдвига, сдвиговые деформации, 

соответствующие началу пластических деформаций при 400ºС соответственно.  
Таким образом, найдены координаты точки «S» (рисунок 2.). Приближённо полагаем, 

что второй и третий участки диаграммы деформирования можно построить, изменив 
масштабы по осям координат на величины К  и КG соответственно (по отношению к 
диаграмме деформирования в холодном состоянии). Тогда координаты точки «В»:

811814,0997  МПа. 

  .0159,0
909,0

011,00165,0
00988,0/' 


 GsBs K  

Максимальный угол сдвига при термоосадке γmax можно определить по формуле 1 

0153,0
2,2295,3

266,3
22

max
max 








nD

d

,  

где  d – диаметр проволоки,  
D – средний диаметр пружины,  
n – число витков,  
λmax – наибольшая осадка. 
Если при таком сдвиге схематизировать диаграмму для упруго–пластического тела 

при 400С, то предел текучести получается 790400 s МПа. 

Выводы. 



Фундаментальные и прикладные проблемы техники и технологии 

№ 4-1 (324) 2017 ________________________________________________________________ 127 

1) Модуль упрочнения при значительных пластических деформациях проволоки из 
стали 70ХГФАШ имеет малое значение и составляет П=1500 МПа, при сдвиговых 

деформациях G =
3


= 877 МПа. 

2) На основе диаграммы сдвига, построенной по результатам холодной пластической 
осадки пружин, а также с учетом результатов экспериментов по испытаниям проволоки на 
разрыв и определения модуля упрочнения при значительных деформациях построена 
схематизированная диаграмма деформирования проволоки 70ХГФА–Ш как для упруго–
пластического тела без упрочнения. 

3) Исходя из схематизированной диаграммы деформирования проволоки 70ХГФА–Ш 
предел текучести при 400ºС составляет τs

400
 ≈790MПa. 
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УДК 621.431 
 

А.В. НЕМЕНКО, М.М. НИКИТИН 
 

ДИАГНОСТИКА ВОЗМОЖНОГО ОТКАЗА В ЭЛЕМЕНТАХ 
ПОДЪЕМНО – ДВИЖИТЕЛЬНОГО  КОМПЛЕКСА СУДОВ  
С ДИНАМИЧЕСКИМ ПРИНЦИПОМ ПОДДЕРЖАНИЯ 

 
Аннотация. Отказ в работе  элементов подъемно – движительного комплекса судов с динамическим 

принципом поддержания представляет серьезную эксплуатационную проблему. Актуальной задачей 
исследований является распознавание нарастающего повреждения до наступления разрушительных 
последствий. В настоящей работе предложена прогнозная модель, описывающая  постепенное накопление 
дефектов в деталях,  подверженных реальным нагрузкам. Рассмотрена методика обработки показаний с  
датчиков контроля напряженно – деформированного состояния объекта и нахождения параметров процесса 
скользящего среднего, учитывающего характер изменения  напряжений вследствие раскрытия усталостной 
трещины. Исходными данными являются временные ряды информационных значений величин, полученных с 
первичных преобразователей, а результатом прогноза – значение остаточного ресурса.  Полученный 
алгоритм может использоваться в режиме реального времени.     

Ключевые слова:  усталостное разрушение, система диагностики, прогнозирование, остаточный ресурс. 
 
Введение.  
Специфика работы объектов с динамическим принципом поддержания определяет 

особые требования к их надежности. Высокие скорости их движения в сочетании с 
конструкционными особенностями увеличивают вероятность аварийных ситуаций, к 
которым могут привести повреждения рабочего комплекса, обеспечивающего подъем и 
движение судна и являющегося системой повышенной ответственности.  В частности, 
повреждение элементов нагнетателя на ходу судна может привести к снижению давления в 
подушке под корпусом, что приведет к его опусканию на подкорпусный экран до того, как 
будет сброшена горизонтальная скорость, а в этом случае авария неизбежна.  

Проблема прогнозирования безотказной работы агрегатов судна является актуальной 
задачей, и ее решению способствует применение оперативно – оценочной системы, 
построенной на предварительном критериальном регламенте.   

Основная часть. 
Элементы рабочего комплекса испытывают воздействия нагрузок различного типа. 

Наиболее опасными являются циклические нагружения, поскольку они при последовательно 
повторяющемся характере приводят к накоплению усталостных повреждений в материале 
объекта, что уменьшает  его жизненный цикл и приводит к  отказу в работе. 

Напряженно – деформированное состояние элементов подъемно – движительного  
комплекса определяется характером  деформаций, возникающих под действием 
нагружающих влияний. 

Поле напряжений представляет собой совокупность нормальных и касательных 
составляющих, которые имеют автономно  различный характер синхронного развития. 
Особенностью задачи является существенная нестационарность используемых временных 
рядов (величины, как правило, меняются в сторону увеличения до момента отказа [3] ) в 
сочетании с достаточно большим  требуемым горизонтом прогноза.  

Поставим цель найти остаточный ресурс tres как время от текущих характерных  
значений циклически изменяющегося нормальных или касательных напряжений до того 
момента, когда эти значение превысит соответствующие пределы выносливости. 

Рассмотрим схему, в которой для s точек измерения собираются 2 временных ряда по 
каждой точке k, содержащие значения нормальных σk и касательных τk напряжений. 
Последовательности измеренных значений  образуют временные  ряды, прогноз которых 
позволяет оценить время допустимой работы рассматриваемого объекта. 

Так как усталостное разрушение – необратимый процесс, последовательности 
значений σ1, σ2,…, σm и τ1, τ2,…, τm, измеренных через постоянные интервалы времени t , 
не будут иметь предела в математическом смысле, а рано или поздно оборвутся при 
превышении очередным значением предельно допустимых нормальных или касательных 
напряжений  вследствие разрушения конструкции. Тем не менее, те же последовательности, 
отсортированные в обратном порядке, σm, σm–1,…, σ1 и  τm, τm–1,…, τ1 могут иметь такой 
предел при условии, что σ1 и τ1 были измерены до начала процесса усталости [4]. 

Рассмотрим последовательность нормальных напряжений 
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                                                    σ0, σ1, σ2,…, σm.                                                               (1)  
Последовательность (1) взята в моменты времени, соответственно 
                                              t = 0, t = Δt, t = 2·Δt,…t = m·Δt.                                            (2) 
Введем допущения, что значения последовательности (1) являются значениями 

единой функции 
                                                           t ,                                                                      (3) 

где  t – время, прошедшее с начала регистрации последовательности (1).  
Полагаем, что функция (3) является аналитической, то есть, обладающей разложением 

в степенной ряд    по меньшей мере, на интервале  тtt  2,0     

                                                        п
п

п ttсt 0
0

 



 .                                                     (4) 

Вспомогательная к  t  функция u(t), определена соотношением 

                                                        










t

t
tu

1
                                                                (5) 

и имеет устранимую особенность в точке 1t . Радиус сходимости R разложения (5) 
в степенной ряд 

                                                                        





1n

n
n tutu                                                                      (6) 

удовлетворяет неравенству        
                                                                  1R .                                                                 (7) 
Тогда, согласно [5], существует предел 
                                                     t

t



 lim ,                                                              (8) 

который может быть вычислен с помощью суммы из коэффициентов (4) 

                                           n

m

n

n

m
c

n

m








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

0

1lim .                                                    (9) 

Данная сумма при принятых допущениях будет сходящейся при всех наборах 
коэффициентов сп с центрами сходимости в пределах интервала аналитичности функции (3).  

Этот предел и формулу (9) используем для прогнозирования следующих m значений 
последовательности (1). Считая средние значения напряжений на стационарном режиме 
работы установки до развития усталости в её элементах изменяющимися в незначительных 
пределах, получим 

                                                          0  .                                                                  (10) 
Из (9) следует, что сумма, содержащая коэффициенты разложения (3) в степенной ряд 

при неограниченном увеличении окна прогнозирования m в пределе будет равной значению 
(10) вне зависимости от используемых коэффициентов. 

Выразив коэффициенты (4) через значения (1) и учитывая постоянство суммы (9), 
учитывающей эти коэффициенты, составим систему алгебраических уравнений, 
позволяющих  рекуррентно определить следующие m значений последовательности (1). 

Используем непосредственно формулу Тейлора 
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где  0t ˗ любое значение, принадлежащее последовательности (2).  
Разностная схема нахождения производных имеет вид: 
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Учитывая (12), (11) и (1), выразим коэффициенты (4) в виде единой формулы 
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Учитывая (13), (9) и (10), получим соотношение для достаточно большого окна m 
последовательности (1)  
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где  k – произвольное положительное целое число  mk ,...,0 . 
Преобразовав (14) к виду, где каждое значение последовательности (1) встречается 

только один раз, запишем: 
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что при замене приближенного равенства точным соответствует процессу скользящего 
среднего  
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m
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                                                               (16) 

относительно временного ряда (1) с окном прогнозирования величиной (m+1) удерживаемых 
значений, средним 0S     и коэффициентами  
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Собственно прогноз, как и для любой другой модели скользящего среднего [6], 
включает  вычисление следующего значения ряда  по m предыдущим. Так, значение 1 km  

может быть найдено при известных kmk   ,...,1  по формуле 
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При сдвиге окна прогнозирования в сторону возрастания времени и использовании 
найденного значения находится  2 km , и так далее, до m2 . 

Применимость алгоритма к данному значению следует из предложенных допущений. 
Практически же процесс рекуррентного вычисления прогнозных значений следует 

продолжать пока очередное значение σm+j не превысит допускаемое нормальное напряжение. 
Соответственно, если последнее измеренное значение имело индекс m, то оставшийся ресурс 
в единицах времени шага Δt может быть оценен с помощью неравенства 

                                               tjttj res 1 .                                                          (19) 
Те же соображения остаются в силе и для второго ряда – ряда касательных 

напряжений, и для рядов, полученных обработкой сигнала с остальных датчиков. 
Результирующий ресурс выбирается как наименьшее значение, которое и используется для 
выработки управляющего воздействия с учетом факторов безопасности судоходства. 
 Заключение.  
 В настоящей работе предложен метод оценки остаточного ресурса времени до 
наступления возможного отказа критичных элементов подъемно – движительного комплекса 
судна  с динамическим принципом поддержания. Для решения задачи учитывается, что  с 
качественной стороны деформация поля нормальных и касательных напряжений 
представляет собой ограниченный во времени процесс, завершающийся, когда текущие 
значения его компонентов превышают предел выносливости материала детали. 

На последнем этапе усталостного повреждения, перед окончательным разрушением, 
происходит резкое изменение поля напряжений, что можно установить с помощью 
контроллеров и  избежать аварийной ситуации. 

Заключение. 
Построена модель скользящего среднего (16), которая учитывает его асимптотический 

характер и служит для прогноза новых значений последовательности. При этом введены  
допущения об условной неограниченности  процесса повреждаемости в отрицательном 
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направлении времени (асимптотическим пределом в этом случае является уровень 
напряжений при нормальной работе).  

Остаточный ресурс времени, которым система или оператор могут располагать для 
принятия такого решения, в первом приближении может быть оценен по формуле (19). 
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Abstract. The failure elements affecting the conveying complex vessels with dynamic principle of maintenance 

is a serious operational problem. Urgent research is recognizing the growing damage before the devastating 
consequences. In this paper, we proposed a forecast model that describes the gradual accumulation of defects in detail, 
exposed the real loads. The method of processing statements stress sensors–strain State of the object and find a moving 
average process parameters, taking into account the nature of the change movement as a result of the disclosure of the 
fatigue crack. The source data are time series of information values values derived from primary converters, and the 
result is the value prediction of residual life.  The resulting algorithm can be used in real time. 
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С.Ю. РАДЧЕНКО, Д.О. ДОРОХОВ, И.М. ГРЯДУНОВ  
 

РАСПРЕДЕЛЕНИЕ МИКРОТВЕРДОСТИ  
ПО СЕЧЕНИЮ ИЗДЕЛИЙ ПРИ УПРОЧНЕНИИ  

В УСЛОВИЯХ КОМПЛЕКСНОГО ЛОКАЛЬНОГО НАГРУЖЕНИЯ 
 

Аннотация. Рассмотрен процесс деформационного упрочнения в условиях комплексного локального 
нагружения очага деформации. Приведены экспериментальные данные обработки втулки из бронзового 
сплава. Показаны преимущества деформации в условиях комплексного локального нагружения перед другими 
методами упрочнения. На основе фундаментального закона обратных квадратов, феноменологического 
анализа процесса, анализа экспериментальных данных выведен общий закон распределения микротвердости по 
сечению изделий. 

Ключевые слова: деформационное упрочнение, градиентные структуры, комплексное локальное 
нагружение, закон обратных квадратов.  

 
Введение.  
Широко распространены различные технологии упрочнения деталей машин: от 

нанесения покрытий до формирования наноструктур [1–6]. Одной из новых технологий 
является технология деформационного упрочнения, основанная на комплексном нагружении 
локального очага деформации (упрочняющее КЛН–деформирование), которая позволяет 
формировать градиентные от поверхности изделия субмикро– и нанокристаллические 
структуры материала [4, 5].  

В качестве показателей оценки результатов применения различных способов 
упрочнения можно предложить следующие величины – степень наклепа (упрочнения) H  и 

градиент наклепа (упрочнения) hH  , которые определяются как:  
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HH
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 ,                                                     (1) 

                                             
%1000
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где  H
 
– микротвердость металла после упрочнения,  

0H
 
– исходная микротвердость; 

h  – глубина упрочнения. 

Принципиально, показатели H   и h  можно применить для оценки всех методов и 

способов упрочнения, так как их конечной целью является улучшение эксплуатационных 
характеристик деталей машин. Таким образом, для определения характеристик (1) и (2) 
необходимо измерить максимальную микротвердость обработанного изделия (практически 
это твердость поверхностных и ближайших приповерхностных слоев) и глубину упрочнения, 
что инструментально не представляет сложности.  

Основная часть.  
Одна из возможных схем упрочняющего КЛН–деформирования представлена на 

рисунке 1. Процесс формирования упрочненной структуры идет за счет внедрения 
кольцевого выступа в металл заготовки при его винтовом перемещении в результате 
возвратно–поступательного перемещения ролика (поз. 1 рисунок 3) в осевом направлении, 
что отчасти воспроизводит признак группы технологий, относящихся к поверхностному 
пластическому деформированию (ППД) – обкатку роликами или шариками. Однако, 
последние позволяют эффективно осуществить только 1 – 3 прохода до начала разрушения 
поверхностного слоя, в то время как в процессах упрочняющего КЛН–деформирования 
подобное ограничение отсутствует. Это достигается тем, что ролики (поз. 5 рисунок 1) 
«заглаживают» сделанную инструментом (поз. 6 рисунок 1) канавку и параллельно создают 
квазигидростатическое давление на втулку в целом. При реализации КЛН–деформирования в 
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S.Yu. RADCHENKO, D.O. DOROHOV, I.M. GRYADUNOV 

 
MICROHARDNESS DISTRIBUTION IN CASE  

OF STRAIN HARDENING UNDER COMBINED LOCAL LOAD 
 

Abstract. We have reviewed strain hardening in the working zone under complex local load. Experimental 
process data are given for a gun metal bush. We have identified advantages of using combined local load straining 
technique compared to other hardening methods. The general law of microhardness distribution in the cross–section 
has been brought out, based on the fundamental inverse square law, phenomenological analysis of the process and the 
data obtained. 

Keywords: Strain Hardening, Gradient Structures, Combined Local Load, Inverse square law. 
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ВЛИЯНИЕ ИСХОДНОГО РАЗМЕРА ЗЕРНА ТИТАНОВОГО СПЛАВА ВТ1–00 
НА ЕГО ИЗНОСОСТОЙКОСТЬ ПОСЛЕ ОБЛУЧЕНИЯ ИОНАМИ МЕДИ 

 
Аннотация. Осуществлена модификация поверхностей трения и выполнены исследований образцов 

технически чистого титана ВТ1–00 (крупнозернистое и ультра мелкозернистое состояния) ионами меди. 
Установлено существенное увеличение износостойкости образцов, подвергнутых ионной имплантации. 
Выявлено образование островковых вторичных структур и прослежена их эволюция в процессе трения. 
Показано, что эти вторичные структуры определяют динамику изнашивания как образцов с 
крупнозернистой, так и образцов с ультра мелкозернистой структурами. 

Ключевые слова: титановый сплав, интенсивное пластическое деформирование, размер зерна, 
структура, износостойкость. 

 
Введение.  
Высокая удельная прочность и коррозионная стойкость титана и его сплавов 

обусловили их широкое применение в технике и медицине. Однако использование 
титановых сплавов в узлах трения сдерживается их низким сопротивлением изнашиванию [1, 
2]. Проведенные ранее исследования показали, что повышение износостойкости можно 
получить путем азотирования, цементации, борирования. Создаваемые поверхностные слои 
получаются очень хрупкими. 

Анализ результатов исследований, проведенных в последние годы, позволяет сделать 
вывод, что традиционные методы повышения износостойкости изделий из титана и его 
сплавов малоэффективны. Наилучший результат повышения износостойкости пар трения 
достигается в том случае, если создаются условия образования в процессе работы вторичных 
структур, которые осуществляют демпфирование нагрузки, являются твердой смазкой и 
сами восстанавливаются [3, 4].  

В связи с этим целью настоящего исследования являлось изучение процессов, 
происходящих на поверхности образцов титанового сплава ВТ1–00 при трении, 
способствующих формированию вторичных структур. Исследовались влияние 
комбинированной обработки, включающей интенсивное пластическое деформирование с 
последующей ионной имплантацией меди, на структуру и триботехнические свойства 
титанового сплава ВТ1–00. 

Материал и методика исследования. 
В качестве материала для исследования выбран титан ВТ1–00 (Ti – основа; C – 0,04; 

Fe – 0,18; Si – 0,07; Ni – 0,04 масс. %). Интенсивное пластическое деформирование 
проводилось методом равноканального углового прессования (РКУП) [5]. Число проходов 
РКУП равнялось 5. Степень накопленной логарифмической деформации титанового сплава 
после РКУП составляла е = 2,3 [5]. 

Ионно–лучевая обработка ионами меди проводилось на экспериментальной 
установке, оснащенной источником с возможностью одновременной обработки ионами 
металлов и ионами газов [6]. Имплантация проводилась при энергии ионов 40 кэВ и 
плотности ионного тока 1,9–2,8 мА/см2 в течение 80–150 мин при температуре нагрева 
образца 120 °С. При имплантации меди дозу облучения задавали на уровне 2,5•1017, 5•1017 и 
8•1017 ион/см2. 

В качестве материала исследования использовали образцы,  имеющие форму 
параллелепипеда с размерами 6×6×50 мм. Образцы титана ВТ1–00 находились исходно в 
двух состояниях: крупнозернистом (размер зерен d ~ 18 мкм) и ультра мелкозернистом 
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(УМЗ). Средний поперечный размер зерен и субзерен УМЗ титана ВТ1–00 составлял 0,24–
0,26 мкм, размер крупных зерен достигал 2 мкм, объемная доля зерен размером 1–2 мкм – 23 
%.  Обработку осуществляли в остаточной атмосфере при давлении ~10–2 Па. 

Исследования структуры образцов осуществляли методами сканирующей (прибор 
Karl Zeiss EVO 50) и просвечивающей дифракционной (ЭМ–125К) электронной 
микроскопии. Трибологические испытания образцов проводили по схеме “диск–палец” в 
режиме без смазки при скорости скольжения 3 м/с и нагрузке 25 H [6]. 

В качестве контртела использовалась пластина (90х30х3 мм), изготовленная из 
закаленной углеродистой стали У8 (HRC 62). В процессе испытаний с помощью 
тензометрического динамометра определялось значение коэффициента трения. Средняя 
скорость перемещения образца относительно контртела в процессе трибологических 
испытаний составляла ≈ 0,15 м/с. Путь трения за 1 цикл испытаний составлял 30 мм.  

Измерения потери массы образцов в процессе испытаний на износ проводили путем 
их взвешивания на аналитических весах. Измерение величины износа призматических 
образцов осуществлялось по потере массы при испытаниях. Погрешность измерения массы 
образцов составляла 0,03 мг. 

Циклические испытания образцов проводили на установке УИП–2 по методу 
симметричного поперечного изгиба консольно закрепленного пластинчатого образца при 
заданных амплитудах деформации, которые соответствовали уровням знакопеременных 
напряжений 300–800 МПа. Образцы вырезались электроискровым методом из заготовок 
титана ВТ1–0 и имели форму лопаток, длина рабочей части которых составляла 50 мм, 
ширина – 4 мм, а толщина – 1,5 мм. 

Микротвердость измерялась при нагрузке 0,45 Н. Относительная погрешность 
измерений микротвердости не превышала 10 %. 

Исследование фазового состава материалов после различных режимов обработки 
осуществлялось на рентгеновском дифрактометре ДРОН–3.0 в монохроматизированном 
CoKα излучении при ускоряющем напряжении на рентгеновской трубке 30 кВ и анодном 
токе 15 мА. 

Результаты исследования и их обсуждение. 
Зависимость потери массы крупнозернистых образцов титана ВТ1–0 от времени 

испытания (рисунок 1, кривая 1) демонстрирует стадии с высокой скоростью изнашивания, 
когда трение протекает по адгезионному механизму, и стадии с установившейся низкой 
скоростью изнашивания, характерные для нормального изнашивания. 

 

 
 

Рисунок 1 – Весовой износ образцов от времени испытаний:  
1 – крупнозернистый (КЗ) титан ВТ1–0; 2 – ультра мелкозернистый (УМЗ) титан ВТ1–00. 
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Микрорентгеноспектральный анализ так же показывает присутствие в данных 
областях кислорода, железа и углерода. Образцы крупнозернистого титана ВТ1–0, 
модифицированные ионами меди, делили на две партии. Одну из них подвергали 
высокоинтенсивной комбинированной обработке, сочетающую ионную имплантацию и 
предварительную ультразвуковую обработку. Результаты трибологических испытаний 
образцов после данных обработок приведены на рисунке 5. 

Анализ результатов, приведенных на этом рисунке, показывает, что ионная 
имплантация увеличивает износостойкость в 5–7 раз. 

Ионная имплантация с дозой 2,5•1017 ион/см2 в сочетании с ультразвуковой 
обработкой имеет несколько меньший эффект в повышении износостойкости. В обоих 
случаях кривые имеют стадии с высокой скоростью изнашивания и стадии с установившейся 
низкой скоростью изнашивания. Так же в обоих случаях наблюдается частичное разрушение 
модифицированного слоя. 

При этом образование на поверхности трения вторичных структур в виде островков 
наблюдается только в случае ионной имплантации, в случае комбинированной обработки 
образование вторичных структур в виде островков не наблюдается. В обоих случаях не 
выявлен перенос материала образцов на поверхность контртела и образования на нем 
специфического слоя из перенесенного материала. 

Выполненный анализ морфологии поверхностей трения позволяет предположить 
следующие закономерности образования вторичных (островковых) структур и их эволюцию 
в процессе трения. В начальный момент испытаний (стадия приработки) изнашивание идет 
по адгезионному механизму. В это же время происходит образование вторичных 
(островковых) структур, что приводит к предотвращению интенсивного адгезионного 
взаимодействия. Данные вторичные структуры являются пятнами фактического контакта, об 
этом свидетельствует их плоская, параллельная контртелу, поверхность и одинаковая высота 
~ 12 мкм. Элементный микрорентгеноспектральный анализ показал, что в состав вторичных 
(островковых) структур, кроме титана, входят углерод, кислород, железо. Источниками этих 
элементов являются смазка, воздух и контртело. Причем, эти элементы распределены 
именно в объеме вторичных структур, так как при микрорентгеноспектральном анализе 
информация об элементном составе собирается с некоторого объема исследуемого 
материала, глубина данного объема достигает ~ 5 мкм. Необходимо отметить, что анализ 
остальной поверхности трения показал наличие только титана. 

Таким образом, в начальный момент работы трибологической пары происходит 
изменение морфологии поверхности. Формируются вторичные структуры в виде 
островковых образований. Интересным представляется процесс образования вторичных 
структур. Мы предполагаем, что за счет адгезионного схватывания происходит перенос 
материала с образцов на контртело и его размазывание. В это время титан окисляется, в него 
попадает углерод и железо. 

После образования на контртеле из перенесенного материала слоя определенной 
величины происходит постепенное отделение материала от этого слоя и его обратный 
перенос на образцы, где из него происходит формирование вторичных образований, 
имеющих уже другую кристаллическую структуру и другой элементный состав. Химический 
состав вторичных структур представлен элементами самих образцов, контртела, смазки и 
газовой среды. 

Характер образования вторичных структур подобен для всех образцов, однако их 
количество (площадь) и устойчивость сильно отличаются. Определяющим в образовании 
вторичных структур является элементный состав и структура приповерхностных слоев 
образцов. Изнашивание исследуемых образцов при трении происходит в результате 
отделения вторичных структур и выхода их за пределы области трения. 
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N.V. UCHEVATKINA, O.A. ZHDANOVICH, M.Yu. SLEZKO, V.V. OVCHINNIKOV 

 
INFLUENCE OF INITIAL GRAIN SIZE TITANIUM ALLOY VT1–00 FOR 

HIS DURABILITY AFTER IRRADIATION OF COPPER IONS 
 

Abstract.  Implemented modification of friction surfaces and studies of samples of technically pure titanium 
ВT1–00 (coarse–grain and ultra fine–grained) copper ions. Found a significant increase in wear resistance of samples 
subjected to ion implantation. Revealed the formation of islet secondary structures and traced their evolution during 
friction. It is shown that these secondary structures define the dynamics of wear as samples with coarse–grained and 
samples with ultra fine grain structures. 

Keywords: titanium alloy, intensive plastic deformation, grain size, structure, and durability. 
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К.Ю. ФЕДОРОВСКИЙ, Н.К. ФЕДОРОВСКАЯ 
 

ТЕРМОРЕГУЛИРОВАНИЕ КОНТУРОВ  
ЭКОЛОГИЧЕСКИ БЕЗОПАСНЫХ ЗАМКНУТЫХ СИСТЕМ 

ОХЛАЖДЕНИЯ ЭНЕРГОУСТАНОВОК 
 

 Аннотация. На примере судовых энергетических установок рассмотрены вопросы создания 
эффективно функционирующих замкнутых систем охлаждения, исключающих прием забортной воды и, на 
этой основе обеспечивающих экологическую безопасность эксплуатации. Получены необходимые расчетные 
зависимости по терморегулированию такой системы, что обеспечивает оптимальные условия ее 
эксплуатации при различных температурах забортной воды. 

Ключевые слова: система охлаждения, энергоустановка, рыбные запасы, рециркуляция. 
 

 Введение. 
Система охлаждения является одним из обязательных элементов тепловой 

энергетической установки. В настоящее время широко применяются разомкнутые системы 
охлаждения, предусматривающие потребление воды из морей или континентальных 
водоемов. Использование таких систем имеет технические и экологические аспекты.  

C технической точки зрения разомкнутые системы характеризуются низкими 
показателями надежности работы в условиях загрязненной воды моря или континентального 
водоема. Возникает угроза  засорения системы и интенсифицируется коррозионно–
эрозионный износ её элементов. Это может привести к внезапной остановки системы, и как 
следствие энергоустановки, или снижения срока ее службы [1]. 
 Для разомкнутых систем охлаждения чрезвычайно важным оказывается 
экологический фактор [2].  Потребление воды осуществляется обычно с глубин, где 
сосредоточено большое количество планктона, икринок и рыбной молоди. Попав в систему 
охлаждения и пройдя через насосы, арматуру, охлаждаемое оборудование и д.р., указанные 
организмы практически полностью погибают [3, 4]. В результате уничтожается основа 
пищевой цепочки водоема, что наносит непоправимый ущерб рыбным запасам.  
 Растет понимание важности указанных вопросов. Решение проблемы может быть 
найдено в создание экологически безопасных замкнутых систем охлаждения (ЗСО) 
энергоустановок. Такие системы исключают прием охлаждающей воды, а теплоотвод 
обеспечивается за счет специальных устройств теплоотвода (УТ) размещенных, на 
некоторой глубине водоема.  

Основная часть. 
 Рассмотрим данный вопрос подробнее на примере ЗСО судовых энергетических 
установок [5]. Охлаждаемый теплоноситель подается в УТ, в котором теплота теплоносителя 
передается через обшивку корпуса судна забортной воде (рисунок 1). В судостроении эта 
разновидность УТ называется обшивочным теплообменным аппаратом (ОТОА). С внутренней 
стороны  судна формируется лабиринтный канал, в котором движется охлаждаемый 
теплоноситель. Зазор h в канале в различных случаях изменяется в пределах 10…30мм. 
Аппараты просты в изготовлении и надежны в эксплуатации. 

Отметим, что среди проектов судов, представляемых в последнее время для 
рассмотрения Главным управлением Российского морского регистра судоходства, 
приблизительно в одной трети случаев используется ЗСО.  

Эффективность работы УТ существенно зависит от температуры забортной воды, 
изменение которой определяется временем года и районом плавания судна. Понижение 
температуры забортной воды приводит к дополнительному переохлаждению теплоносителя, 
циркулирующего в ЗСО, и ухудшает температурные условия работы охлаждаемого 
оборудования. Необходимы меры, обеспечивающие стабилизацию температуры 
теплоносителя ЗСО. 
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После преобразований запишем выражение (11) в виде: 
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Температура t может быть найдена как: 
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При этом имеем в виду, что tГД и tВО зависят от подводимого теплового потока и 
определяются с использованием зависимостей (9) и (10). Тогда после подстановки этих 
уравнений в (13) имеем: 
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Уравнение (12) с учетом (14) окончательно приобретает вид: 
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Выражение (15) является квадратным уравнением, решение которого может быть 
легко найдено. Расход GРЦ определяется по зависимости (8). 

Заключение. 
Таким образом, при организации рециркуляции имеется возможность обеспечить 

требуемые температурные условия эксплуатации энергетического оборудования. Получены 
выражения, позволяющие рассчитать количество рециркулирующего и подаваемого в УТ 
теплоносителя в зависимости от температуры забортной воды, коэффициента теплопередачи 
УТ, площади его теплопередающей поверхности и других параметров. 
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necessary design dependencies on the thermal regulation of such a system are obtained, which ensures optimal 
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набирается в одну колонку, шрифт – Times New Roman, 12 пт. Отступ первой строки абзаца – 
1,25 см. Выравнивание – по ширине. Междустрочный интервал – единичный. Включить 
автоматический перенос. Все кавычки должны быть угловыми («  »). Все символы «тире» 
должны быть среднего размера («–», а не «–»). Начертание цифр (арабских, римских) во всех 
элементах статьи – прямое (не курсив). 

 Структура статьи:  
УДК; 
Список авторов на русском языке – 12 пт, ВСЕ ПРОПИСНЫЕ в формате И.О. ФАМИЛИЯ 
по центру без абзацного отступа; 
Название (не более 15 слов) на русском языке – 14 пт, полужирным, ВСЕ ПРОПИСНЫЕ 
по центру без абзацного отступа; 
Аннотация (не менее 200–250 слов) на русском языке – 10 пт, курсив; 
Ключевые слова на русском языке (не менее 3 слов или словосочетаний) – 10 пт, курсив; 
Текст статьи; 
Список литературы (в порядке цитирования, ГОСТ 7.1–2003) на русском языке, заглавие 
списка литературы – 12 пт, полужирным, ВСЕ ПРОПИСНЫЕ по центру без абзацного 
отступа, литература оформляется 10 пт. 
Сведения об авторах на русском языке – 10 пт. Приводятся в такой последовательности:  
Фамилия, имя, отчество;  
учреждение или организация; 
ученая степень, ученое звание, должность; 
адрес; 
телефон; 
электронная почта. 

 Название статьи, фамилии и инициалы авторов, аннотация, ключевые слова, список 
литературы (транслитерация) и сведения об авторах обязательно дублируются на 
английском языке ЗА СТАТЬЕЙ. 

 Формулы набираются в редакторе формул Microsoft Equation. Размер символов: 
обычные – 12 пт, крупный индекс – 9 пт, мелкий индекс – 7 пт. Нумерация формул – по 
правому краю в круглых скобках «( )». Описание начинается со слова «где» без двоеточия, 
без абзацного отступа; пояснение каждого символа дается с новой строки в той 
последовательности, в которой символы приведены в формуле. Единицы измерения даются в 
соответствии с Международной системой единиц СИ. 

 Рисунки – черно–белые. Если рисунок создан средствами MS Office, необходимо 
преобразовать его в картинку. Для растровых рисунков разрешение не менее 300 dpi. 
Подрисуночные надписи выполнять шрифтом Times New Roman, 10 пт, полужирным, 
курсивным, в конце точка не ставится. 

 Рисунки с подрисуночной подписью, формулы, выравниваются по центру без 
абзацного отступа. 

С полной версией требований к оформлению научных статей Вы можете озна-
комиться на сайте http://oreluniver.ru/public/file/science/journal/fipptt/ 

Плата за опубликование статей не взимается. 
Право использования произведений предоставлено авторами на основании п. 2 ст. 

1286 Четвертой части Гражданского Кодекса Российской Федерации. 
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