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ТЕНДЕНЦИИ РАЗВИТИЯ СРЕДСТВ МЕХАНОТРОНИКИ, 

АВТОМАТИЗАЦИИ И РОБОТИЗАЦИИ ДЛЯ СИНТЕЗА НОВЫХ 
ВЫСОКОПРОИЗВОДИТЕЛЬНЫХ ТЕХНОЛОГИЙ,  

И МАШИН В СЕЛЬСКОМ ХОЗЯЙСТВЕ 
 

Аннотация. В статье представлены структурная и функциональная схемы роботизированного 
агрегата. Описаны требования необходимые для создания роботизированного агрегата и требования, 
предъявляемые к современному робототехническому средству. В связи с этим сделан обзор средств 
дистанционного управления роботизированным машинно–тракторным агрегатом. Рассмотрены 
преимущества и недостатки способов передачи информации о местоположении и состоянии агрегата. Даны 
краткие сведения в области передовых разработок высокопроизводительных сельскохозяйственных машин. 

Ключевые слова: автоматизация, робототехнические комплексы, сельское хозяйство, глобальная 
спутниковая система, техническое зрение. 

 
Введение 
Современный уровень механизации и автоматизации, а также анализ мировых 

тенденций развития роботизированных устройств, позволяют сделать вывод, что 
робототехнические комплексы (РТК) и интеллектуальные машинные технологии, это 
предпочтительное направление повышения производительности сельскохозяйственного 
производства. Однако на пути решения этой задачи у нас в стране много факторов, которые 
необходимо учитывать. Это отсутствие квалифицированных специалистов в области 
робототехники, отсутствие собственных технологических решений, недостаток 
финансирования, отсутствие заказчиков на внутреннем рынке, затрудненность импорта 
технологических продуктов и их комплектующих, небольшой объем инвестиций внутри РФ, 
трудность в создании сети серверного обслуживания, отсутствие российской электронной 
базы, все современные комплектующие и технологии – зарубежные. 

Перечисленные факторы создают барьеры для развития робототехники и организации 
массового производства во всех ее сегментах на территории России. 

Для нейтрализации массового производства во всех этих негативных факторов 
необходима государственная продуманная система поддержки развития этой отрасли и, 
особенно в сельскохозяйственном секторе. В последние годы государство стало проявлять 
заметный интерес к робототехнике, что является обнадеживающим фактором и появилась 
необходимость изучения и нахождения оптимальных решений в создании 
робототехнических средств для сельскохозяйственного производства. 

В настоящее время, в связи с развитием наукоемких технологий, активно 
используемых в различных аспектах деятельности человека, большой интерес вызывает 
создание роботов для сельскохозяйственного производства с целью облегчения тяжелого 
труда сельских тружеников. Так как, сельскохозяйственное производство характеризуется 
сжатыми сроками проведения полевых работ (вспашка, посев, уборка урожая) механизатору 
приходится работать длительное время в тяжелых условиях (шум, вибрация, запыленность, 
температурный режим, агрессивность среды при внесении ЖКУ и средств защиты растений). 
Поэтому создание роботов для проведения полевых работ является актуальной и сегодня, 
несмотря на большое внимание, уделяемое производителями тракторов, комбайнов и другой 
с/х техники вопросу обеспечения комфортности условий труда механизатора. [1] 

СЕКЦИЯ «ТЕОРЕТИЧЕСКАЯ И ПРИКЛАДНАЯ МЕХАНИКА» 
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Во время проведения полевых работ РТКСХ выполняются следующие операции: 
основная обработка почвы, посев, внесение удобрений и средств химической защиты 
растений, уборка урожая зерновых и пропашных культур.  

Для создания РТКСХ необходимо: 
 полная автоматизация технологического процесса; 

 точное позиционирование агрегата на поле и автоматическое управление 
движением на оцифрованном поле по заданной программе; 

 дистанционный контроль за передвижением агрегата и выполнением 
технологического процесса. 

 

 
Рисунок 3 – Алгоритм контроля и управления посевом зерновых культур РТКСХ 
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Кроме того, робот должен быть универсальным. Однако при самом поверхностном 
рассмотрении этого вопроса получается, что только система позиционирования может быть 
общей для всех операций [2]. 

Требования, которые предъявляются к РТК это: 
 востребованность производителями сельскохозяйственной продукции; 

 безопасность, энергоэффективность и высокая надежность в работе; 

 окупаемость; 
 качество выполнения технологической операции должно соответствовать 

технологическим нормам; 

 дистанционный контроль за выполнением работ и при необходимости 
дистанционного управления. 

Решение задачи дистанционного управления РТКСХ на поле, выполняющего 
различные технологические операции в полеводстве наталкиваются на ряд трудностей. 

Во–первых, это выбор частоты, на которой должна осуществляться связь с 
мобильным агрегатом. Для дистанционного контроля и управления технологическим 
процессом, кроме приема телеметрической информации необходима передача 
видеоизображения качества выполнения работы в реальном масштабе времени. В таблице 1 
представлена общая классификация основных стандартов беспроводной передачи данных. 
При расстоянии между мобильным агрегатом и оператором, осуществляющим управление в 
пределах прямой видимости, эта задача решается на частотах 2,4 ГГц (Wi–Fi, Blutooth, 
ZigBee). Из этих трех стандартов беспроводной передачи данных Wi–Fi имеет наибольшую 
дальность передачи данных до 1000 м и максимальную скорость 150–600 Мбит/с. Если же 
необходимо обеспечить управление агрегатом вне прямой видимости, то во всем мире 
существует группа радиочастотных диапазонов 434/868 МГц открытых для свободного 
использования, в которых не существуют стандартов беспроводной связи. На этих частотах 
можно обеспечить дальность связи до 10 км. При относительно невысокой скорости 
передачи данных 500 Кбит/с по сравнению с частотами 2,4 ГГц и выше, встает вопрос о 
невозможности работы нескольких объектов одновременно.[3] 

Рассмотрим возможности передачи телеметрической и видеоинформации на частотах 
434/868 МГц. 

В реальном масштабе времени и в широком диапазоне частот порядка 6 МГц с 
помощью передатчика (как это делается при передаче телевизионного сигнала) передавать 
видеоизображение невозможно с одной стороны из помех, которые появляются при работе 
других таких же объектов. Остается передавать изображение видеосигнала в 
последовательном коде в узком диапазоне частот. Но при этом изображение видеосигнала 
получается плохого качества с мерцанием изображения в связи с низкой частотой кадра. 

Ранее в Федеральном научном агроинженерном центреВИМ (ФГБНУ ФНАЦ ВИМ) 
прорабатывался вопрос автоматического вождения трактора, использующего индукционный 
метод ориентации на поле. В качестве ориентира для индукционной САВ использовалась 
напряженность магнитного поля (Н) токонесущего провода помещенного в почву на глубину 
0,5 ÷ 1 м. Жесткая матрица заложенных в земле проводов не давала возможности 
удовлетворительного вождения при смене орудий и различной шириной захвата, в связи с 
тем, что при удалении от токонесущего провода вектор магнитного поля поворачивается на 
угол, стремящийся к 180, причем угол поворота зависит от проводимости и 
диэлектрической проницательности почвы, которые, в свою очередь зависят от влажности, 
структуры, плотности и других характеристик. [4] 

В настоящее время США развивает и внедряет спутниковую навигационную систему 
позиционирования NAVSTARGPS. Принцип работы системы основан на измерении 
расстояния от исследуемого объекта до спутников, положение которых известно с очень 
большой точностью благодаря установке на них атомных часов и известной орбиты 
вращения вокруг земли. Расстояние вычисляется по времени задержки распространения 
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сигнала от посылки его спутником до получения приемником. Многолетний опыт 
использования GPS в сельскохозяйственном производстве дает хорошие результаты по 
определению точности позиционирования мобильных средств. ВИМ проводил работы по 
определению точности позиционирования системы GPS курсоуказателя Guide500 
применительно к сельскохозяйственному производству. 

 
Таблица 1 – Общая классификация основных стандартов беспроводной передачи 

данных 

 ZigBee Bluetooth Wi–Fi 434/868 МГц 
GSM/GPRS/E

DGE 
3G 

Частотный 
диапазон, МГц 

2400–2483 2400–2483 2412–2484 434/868 900/1800 
1885–2025; 
2110–2200 

Скорость 
передачи 

данных, кбит/с 
250 721 11000/54000 500 144/171 

144/384/204
8 

Дальность связи, 
м 

 
200 

Класс 1 – 100; 
Класс 2 – 10; 
Класс 3 – 1 

100, 
С внешней 
антенной до 

5000 

1000 
С внешней 
антенной до 

10 000 

Во всей зоне 
покрытия 

Во всей 
зоне 

покрытия 

Потребление 
тока, active 
мА/sleep мкА 

 
30/1 

 
70/20 

 
450 

 
30/1 

 
350/3500 

 
350/3500 

Модуляция, 
доступ к среде 

DSSS FHSS DSSS FHSS 
TDMA/FDM

A 
TDMA/FD
MA/CDMA 

 
Топология 
системы 

«точка–
точка», 

«звезда», 
сеть 

«точка–точка», 
«звезда», сеть 

«точка–
точка», 

«звезда» 

«точка–
точка», 

«звезда», сеть 

 
Сотовая сеть 

 
Сотовая 
сеть 

 
В настоящее время в сельскохозяйственное производство внедряется технология 

точного земледелия, а для этого необходима точность позиционирования 3 ÷ 5 см. Поэтому 
сейчас продвигается идея совместного использования ГЛОНАСС/GPS, в связи с чем, 
появился термин – глобальная навигационная спутниковая система (ГНСС). Чтобы 
уменьшить погрешности определения координат, обусловленные атмосферными и 
многолучевыми эффектами, используются как инструментальные, так и вычислительные 
методы. В качестве основного инструментального метода, позволяющего увеличить 
точность вычислений координат, применяется дифференциальный режим работы ГНСС, 

В дифференциальном режиме используются базовые станции (БС), на которых 
устанавливаются высокоточные приемники ГНСС. Координаты этих БС известны с высокой 
точностью. При приеме сигнала спутника вычисляются поправки между вычисленными 
мгновенными значениями координат и известными координатами БС. Эти поправки по 
каналу радиосвязи передаются на мобильный объект для уточнения его положения, что 
позволяет повысить точность позиционирования до 2 ÷ 5 см. 

Чтобы обеспечить наилучшие точностные характеристики для однодиапозонной 
односистемной навигационной аппаратуры требуется 12 каналов приема. Дополнительная 
система требует прибавки еще 12 каналов приема. Для дальнейшего улучшения точностных 
характеристик посредством приема и учета корректирующей информации также требуются 
отдельные каналы приема излучаемых этими системами сигналов. [5, 6] 

Одним из наиболее интересных и бурно развивающихся направлений в современной 
электронике является так называемое SoftwareDefinedRadio (SDR).  

Суть этой концепции заключалась в том, чтобы создать универсальное устройство, 
способное работать с максимально возможным количеством различных радиостандартов, в 
широком диапазоне частот с различными принципами модуляции и кодировки. При этом 
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предполагалось предельно упростить аналоговую часть устройства, а все задачи по 
декодированию и обработке сигналов возложить на компьютер. 

Базовой частью всех SDR является микроэлектронные чипы. Лидерами в их 
производстве признаны американские компании Qualcomm, Broadcom, TexacInstruments, 
Trimble. Эти фирмы выпускают современные чипы с поддержкой GSM/GPRS/3G/4G, Wi–Fi, 
Blutooth, ZigBee, GPS/GLONASS/Galileo. В качестве примера последних разработок можно 
привести такие чипы, как TIWL187x, Qualcomm–Snapdragon, BroadcomBCM47521, ST–
EricssonCG1950. В их производстве используются самые современные технологии. Основное 
отличие этих моделей заключается в низком энергопотреблении, малых габаритных 
размерах и современных математических методах обработки сигнала. 

В последнее время наблюдается значительный интерес к разработке и внедрению 
лазерных систем позиционирования, которые начинают применять в автоматизации, 
робототехнике, беспилотниках, автономного и полуавтономного управления автомобилем, 
инженерной геодезии. Такая технология позволяет дистанционно измерять расстояние до 
объекта и широко применяется в задачах картирования и разводки с борта наземных 
транспортных средств, воздушных судов, космических кораблей и искусственных 
спутников, как в гражданских, так и в военных целях. Эта технология применяется в области 
машинного зрения для распознавания объектов, реализации человеко–машинного 
интерфейсов и трехмерного воссоздания пространства. Существует несколько физических 
принципов и связанных с ними технологий, используемых при разработке датчиков 
расстояния. Одним из типов измерителей расстояний является так называемый LIDAR. Это 
аббревиатура образована от слов LightandraDAR. LIDAR представляет собой технологию 
дистанционного зондирования для оценки расстояния (дистанции, глубины) путем 
облучения объекта лучом лазера, а затем получения отраженного изучения на фотодетектор. 
Это принцип измерения расстояния известен как измерение времени пролета (Time–of–
Flight, TOF). Оценка расстояний получается с очень высокой точностью всех объектов за 
исключением объектов с высокой (зеркальной) отражательной поверхностью или сильной 
поглощающей поверхностью. В этом случае отраженный сигнал не вернется на 
фотодетектор. [7, 8, 9]. 

На рисунке 4 представлен внешний вид некоторых моделей LIDARов. В таблице 2 
представлены характеристики этих устройств. Из анализа характеристик представленных 
образцов можно сделать вывод, что качество изображения (четкость, разрешающая 
способность) значительно уступают видеокамерам. Преимуществом, конечно, является 
возможность видеть изображение окружающего пространства в ночное время суток. Однако, 
цена такого устройства составляет сотни тысяч рублей, что для использования в 
сельскохозяйственном производстве пока малопривлекательно. 

Робот должен обладать собственным техническим зрением для предотвращения 
столкновений с различными объектами, а также для транспортного перемещения к 
обрабатываемому полу и обратно. В настоящее время зарубежные производители выпускают 
датчики, трехмерные камеры, а также системы технического зрения. [10] 

Комбинированный навигационный комплекс относится к навигационным системам и 
может быть использован для навигации наземных роботов в практически любых условиях 
окружающей среды. Примерами таких роботов могут быть автоматические 
сельскохозяйственные роботы. 

В настоящее время зарубежные производители выпускают датчики, трехмерные 
камеры, а также системы технического зрения. На рисунке 5 представлен датчик 
технического зрения IFM Electronic O2D2. Принцип его действия основан на архитектуре 
CMOS. Датчик работает при постоянном напряжении и может эксплуатироваться при 
температуре от –10 до 50 °C. Размеры его поля зрения от 15 x 11 мм до 1280 x 960 мм. 
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Abstract. The article presents the structural and functional diagrams of the robotic unit. The requirements 
necessary for creating a robotic unit and the requirements for a modern robotics facility are described. In this 
connection, an overview of the remote control means of the robotic machine and tractor unit is made. Advantages and 
disadvantages of methods for transmitting information about the location and condition of the unit are considered. 
Brief information is given in the field of advanced development of high–performance agricultural machines. 
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УДК 621.983; 539.374 
 

М.В. ГРЯЗЕВ, С.Н. ЛАРИН, А.А. ПАСЫНКОВ 
 

ТЕОРЕТИЧЕСКАЯ ОЦЕНКА СИЛЫ  
ОТБОРТОВКИ ЗАГОТОВОК ИЗ ЛИСТОВЫХ МАТЕРИАЛОВ, 

ХАРАКТЕРИЗУЮЩИХСЯ АНИЗОТРОПЕЙ 
 

Аннотация. Операция отбортовки достаточно активно применяется при изготовлении изделий с 
горлом. Ее распространённость на производстве  обуславливает огромное число отечественных и 
иностранных работ в области исследования данной операции, которые с сожалению не учитывают влияние 
механических свойств заготовки. В связи с этим исследование данного процесса с учетом анизотропии 
является актуальной задачей. В статье рассмотрена отбортовка листового полуфабриката с отверстием на 
промежуточном этапе деформирования на радиальной матрице. Выполнено исследование влияния таких 
важных параметров как  коэффициента отбортовки и радиуса закругления рабочего инструмента на 
максимальную величину силы, возникающую при реализации отбортовки. Полученные результаты 
теоретических исследований могут быть использованы при создании новых технологий получения обработкой 
давлением листовых фланцевых деталей, основной штамповочной операцией которых может быть 
отбортовка плоских заготовок, которые учитывали бы анизотропию.  

Ключевые слова: вытяжка, деформирование,  напряжения, деформации, сила, разрушение. 
 
Введение.  
Для изготовления изделий с горлом самым применяемым является метод листовой 

штамповки, основанный на втягивании пуансоном внутреннего контура отверстия листовой 
заготовки в рабочую поверхность матрицы, и называемый отбортовкой. Данная операция 
очень широко используется на предприятиях машиностроения, в связи, с чем ей было 
посвящено огромное число отечественных и иностранных работ [1–10]. Однако эти 
исследования не учитывают влияние механических свойств заготовки, в частности, 
анизотропию. В связи с этим исследование данного процесса с учетом развивающейся и 
начальной анизотропии является актуальной задачей. При создании прогрессивных 
технологий штамповки тонкостенных фланцевых изделий посредством отбортовки, 
необходимо определить силовые режимы, предельные возможности деформирования, а 
также геометрические размеры изготавливаемой детали. 

Основная часть. 
На рисунке 1 приведена схема отбортовки листовой заготовки с круглым отверстием с 

коэффициентом бо Rrm /0  на том этапе деформирования, при котором максимальны силы 

и напряжения. В исследуемом процессе в одно и то же время реализуется как рост значения 
периметра отверстия, так и изгиб формоизменяемой части заготовки по рабочему контуру 
матрицы. В дальнейшем происходит выравнивание формоизменяемой части по форме 
цилиндрической части матрицы и пуансона. 

Материала формоизменяемой заготовки считаем несжимаемым, имеющим начальную 
анизотропию. В процессе отбортовки он изотропно упрочняется. Для исследуемого процесса 
справедливо условие текучести Мизеса–Хилла и ассоциированный закон течения. 
Моделирование ведем с предположением, что напряженное состояние – плоское. Трение на 
границах инструмента и заготовки учитываем, и считаем, что реализуется закон трения 
Кулона. 

В качестве метода расчета исследуемого процесса применялся метод оценки 
энергосиловых параметров, в основе которого лежит одновременное решение приближенных 
дифференциальных уравнений равновесия и условия пластичности. Зона  1 заготовки, 
лежащая напротив нижней части торца пуансона, всегда не сильно отслоняется от него, и 
поэтому,  значения изгибающего момента на зоне между первым и вторым участками зоны 2 
незначительны. 
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определяющий положения исследуемого участка заготовки;; 05,0 srr ппс  ; 1r  – величина 

напряжения в меридиональном направлении, действующего на поверхности расположенной 
противоположно плоской части торцовой поверхности деформирующего инструмента 
(участок 1) и вычисленная при ar  ; s  – сопротивление материала пластическому 

деформированию с учетом его упрочнения при ar  ; пr  – радиус закругления пуансона. 

Интегрирование уравнения выполняем численно методом конечных разностей от границы 
между вторым и первым участками очага деформации. 

Участок 3 очага деформации 3 формоизменяется без участия силы инструмента. 
Напряженное состояние на участке конической формы найдем проинтегрировав 
дифференциальное уравнение равновесия параллельно с условием текучести для 1Rr  . 
Максимально возможное значение напряжений, формирующихся в зоне разделения очага 
деформации может быть определена при 2Rr  , то есть когда фрагменты заготовки 

изгибаются на кромке матрицы. Степень влияния данного изгиба на r  определяется:  
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где  Мr  – радиус закругления матрицы. 

В уравнении (4) величина после знака равенства позволяет выполнить учет 
приращения напряжений в меридиональном направлении, которое возникает при 
выпрямлении заготовки. В этом выражении значение радиуса отбортовываемого отверстия в 
текущий момент времени отr  зависит от угла, который оценивается по величине 

перемещения пуансона. По мере продвижения пуансона этот угол изменяется от 2/  в 
начальный момент формоизменения до 0, в конечный момент, когда сила максимальна, т.е. 
радиусы формоизменяющего инструмента находятся на одном уровне. Вместе с падением 
значения величины угла, наблюдается рост радиуса отверстия. 

Как описано в работе [4], если учесть, что значение длины образующей заготовки в 
процессе отбортовки не меняется, то судя по геометрии можно получить выражение, 
разрешающее нам выявить связь между значением радиуса отверстия и углом   для того 
момента, при котором зазор между инструментами приблизительно одинаков с толщиной 
заготовки: 

])2/(57,0)[( 00  tgsrrrr пМот ,                             (5) 

где  отr  – величина радиуса отбортовываемого отверстия в текущий момент, достигаемое 

при величине угла  , а 0r  – радиус отверстия в заготовке. 

При arот   (в самом начале процесса)  

)(57,0 00 srrrr пМот  .                                        (6) 

Величина силы операции отбортовки определяется по соотношению: 
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В процессе формоизменения в один и то же момент реализуется уменьшение 
величины толщины детали и упрочнение материала заготовки. Все это противоположно 
влияет на значение напряжений в меридиональном направлении. В итоге можно сказать, что 
изменение толщины заготовки, и в частности утонение уменьшает значения напряжений в 
меридиональном направлении, а упрочнение, наоборот – увеличивает. 

В итоге можно сказать что для того чтобы учесть упрочнение материала нужна 
информация о деформированном состоянии заготовки. 

На рисунках 2 и 3 представлены графические зависимости изменения относительной 
максимальной величины силы операции отбортовки P  от коэффициента R  при постоянных 
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разных видов металлических  материалов и размеров заготовок. Полученные результаты 
можно использовать как рекомендации при проектировании технологических процессов. 

Работа выполнена в рамках грантов РФФИ № 16–48–710014 и гранта администрации Тульской 
области. 
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THEORETICAL STUDIES OF POWER AT THE COLLECTION  
OF TRAINING FROM SHEET MATERIALS  

OF CHARACTERIZED ANISOTROPES 
 
Abstract. The flanging operation is quite actively used in the manufacture of products with a throat. Its 

prevalence in production causes a huge number of domestic and foreign works in the field of investigation of this 
operation, which unfortunately do not take into account the influence of the mechanical properties of the billet. In 
connection with this, the investigation of this process with allowance for the anisotropy is an actual problem. The 
article deals with the flanging of a sheet semi–finished product with a hole at the intermediate stage of deformation on 
a radial matrix. The influence of such important parameters as the flanging coefficient and the radius of curvature of 
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the working tool on the maximum force that occurs when flanging is realized is investigated. The obtained results of 
theoretical studies can be used to create new technologies for production by pressure treatment of sheet flange parts, 
the main stamping operation of which can be flanging flat pieces that take into account anisotropy. 

Keywords: drawing, deformation, stress, deformation, force, destruction. 
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В этих соотношениях  )(1)()()(Q pAepcpqp   аналитическая функция, нули 
которой определяют полюсы передаточных функций (3)–(5). Для изображения ошибки )(t  с 
помощью вход–выходных соотношений (3) находим  

)()()()()(3)()( 00 pTppGpGpTpt   ,                                    (7) 

где         

            
)(Q

)(

)(1

1
)(1)(

p

pq

pW
pp 


 .                                                (8) 

Равенство (7) представляет собой вход–выходное соотношение для ошибки 
регулирования в виде суммы трех составляющих ошибки: задающего воздействия TЗ(p), 
возмущения от расхода G(p) и возмущения от температуры топлива ),1(0 pT  на входе ТОА. 

Рассмотрим задачу анализа ошибки регулирования на примере ее первой составляющей – 
ошибки от задающего воздействия ТЗ(t). Интересно и важно выяснить, возможны ли 
традиционные методы анализа ошибки в рассматриваемой системе с распределенными 
параметрами.  

Анализ точности САУ при детерминированных возмущениях. Метод системных 
коэффициентов  

Одним из них является метод разложения установившейся ошибки в ряд по 
производным воздействия, или метод системных коэффициентов – коэффициентов ошибки. 
Покажем, что в нашем случае также возможно представление 

...,)()()()( 323130  tTctTctTct                                                  (9) 

где  ,...
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
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dp

d
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Представление (9) называется разложением ошибки в ряд по производным 
воздействия (в данном случае – задающего). Оно имеет, как известно, асимптотический 
характер при t. Итак, будем считать рассматриваемую систему регулирования 
конвективного теплообмена устойчивой. Пусть 

 )()( 1 pLtg                                                                  (10) 
– оригинал передаточной функции (5) замкнутой системы. Введем в рассмотрение интеграл 
свертки 
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 
t

dtTgtT
0

3 )()(),1(                                                            (11) 

– оригинал изображения выхода замкнутой системы. Функция )(tg  имеет смысл весовой 
функции замкнутой системы для ее реакции Т(1,t) на задающее воздействие )(3 tT . Примем, 

что )(3 tT является полиномиальным воздействием. Тогда при всяком фиксированном t 

справедливо разложение 
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0
3 ))((
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,                                             (12) 

где  
k

k
k

dt

tTd
tT

)(
)( 3)(

3   и r–степень полинома, описывающего воздействия )(3 tT . Подставляя 

(12) в (10), получаем 
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
 ,                                                            (13) 

где  

 
t

k
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k
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1
)(                                                         (14) 

– моменты весовой функции (10). Теперь заметим, что по доказанному выше, устойчивая 
система устойчива экспоненциально. Это положение справедливо и для весовой функции как 
оригинала изображения (4). Другими словами 

,...,2,1  ,Re0   ,)(   metg m
t                                  (15) 

где   – подходящая константа.  
Поэтому справедливо утверждение. 
Утверждение. Если рассматриваемая система устойчива, то существуют пределы 

при  t для моментов (14) 
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Действительно, из равенства (14) в силу неравенства (15) следует 
),()( ttm kk                                                                (17) 

где    
t

k
k de

k
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0!

1
)(   . Интегрируя по частям, находим 
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k
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При  k=0 имеем  tet 


  1

1
)(0 , 


 1

)(0  .  

 Из (18) следует, что если существует предел )(1 k , то существует и предел 

)(
1

)( 1  kk 


 . Но при k=0 предел существует. Следовательно, он существует и при k 

=1,2,…, а значит, в силу неравенства (17) существует и предельное значение (16). 
Утверждение доказано. 

Теперь заметим, что равенство (16) можно записать в виде 
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Под знаком производной стоит передаточная функция Ф(p) замкнутой системы (см. 
соотношение (10)). Таким образом, окончательно получаем 

0

)(

!

1
)(





p

k

k

kk
t dp

pÔd

k
Ctmim .                                        (19) 

Из этого следует, что в устойчивой системе при больших t (формально при t в 
коэффициентах представления (13)) справедливо асимптотическое представление выхода 
замкнутой системы 

)(),1( )(
3

0

tTCtT k
r

k
k


 ,                                                       (20) 

где коэффициенты разложения можно вычислить по соотношениям (19). 
Заметим, что если изображение полиномиального задающего воздействия )(3 tT

степени r записать в виде )(
1

)( 313 p
p

pT
r
 , где )(3 p  – многочлен степени r, коэффициенты 

которого определяются по коэффициентам многочлена )(3 tT , то в устойчивой системе 
согласно полученным выше результатам будем иметь представление выхода системы 
следующим выражением:  
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Первое слагаемое в этом представлении является тем же многочленом, что и 
многочлен (20). Поэтому, сравнивая эти представления, видим, что равенство (20) имеет 
место с точностью до экспоненциально исчезающего слагаемого.  

Соотношения (20),(21) принципиально в равной степени эффективны при анализе 
установившегося выхода замкнутой системы, обусловленного задающим воздействием 
полиномиального типа. Вместе с тем, соотношение (20) полезно для обобщений анализа 
установившегося выхода на случай и неполиномиальных задающих воздействий с 
ограниченными высшими производными. Кроме того, как в обычных системах, оно наглядно 
показывает влияние уровня воздействия, скорости его изменения, ускорения и т.д., что при 
расчетах и проектировании системы имеет свое значение. Полученное разложение (20) 
позволяет записать и соответствующее разложение для ошибки системы, обусловленной 
задающим воздействием. При t в устойчивой системе имеем 
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Соотношение (22) перепишем в виде 
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Теперь легко находим в силу (22) и (7) 
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Отметим наглядность (23) в анализе таких структурных свойств системы, как статизм и 
астатизм. Например, для первого коэффициента ошибки имеем в соответствии с (1),(8)  
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где  ]1[
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
  имеет место для систем статического типа, и 

W(0)= – для систем астатического типа.  
Как и для обычных систем, в последнем случае установившаяся ошибка равна нулю 

при постоянном задающем воздействии.  Нетрудно установить более общее утверждение.  
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, следовательно, 
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В этом случае   коэффициентов ошибки равны нулю (аналогично обычным 
системам). Действительно, записав выражение (24) в виде  

),()( ppp 
    

где  
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 
  – аналитическая в точке р=0 функция (т.е. имеющая все 

производные )()( pk  при 0p ) и дифференцируя )(pФ , получаем 
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Дифференцируя еще раз, найдем 
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Таким образом, 
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так как )0()0( 32 bbac   в силу (2). При 1  получаем: 

,0)0()1(   0;)0()1(   ;0)0(  
 ФФФ  но, .0)0()( 

Ф  

Следовательно, .0   ,...,0  ,0 110  ccc  Это означает, что при полиномиальном 

воздействии T3(t) со степенью полинома равной 1 , установившаяся ошибка равна нулю. 
Это положение обычно имеет практическое значение при  =1, поскольку в случае  2 
практически сложно обеспечить устойчивость системы. 

Заключение 
Выполненный анализ свидетельствует: если регулятор САУ ТОА астатического типа 

со степенью астатизма =1, ошибка в установившемся режиме для устойчивой системы 
равна нулю. Заметим также, что выполненное исследование может быть с точностью до 
обозначения повторено и для случаев двух других возмущающих воздействий в 
соотношениях (3). 
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THE ANALYSIS OF ACCURACY OF THE CONTROL SYSTEMS  
WITH THE DISTRIBUTED PARAMETERS  
AT THE DETERMINED INDIGNATIONS 

 
Abstract. Examines the object model with the exchange of heat by convection in the class of systems with 

distributed parameters. The Laplace transformation of equations of convective heat transfer allows to build a model of 
the control object in the field images. On this basis the proposed methods of analysis of dynamic characteristics of the 
device, where full account of the analytical nature of the images the dynamic characteristics. 
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ТЕХНОЛОГИИ И ИНСТРУМЕНТЫ 

УДК 621.852. 
 

А.И. БОХОНСКИЙ, А.И. РЫЖКОВ 
 

ИСПОЛЬЗОВАНИЕ ТЕЛЕСКОПИЧЕСКОГО МАНИПУЛЯТОРА  
ДЛЯ ОПТИМАЛЬНОГО  ПЕРЕМЕЩЕНИЯ ОБЪЕКТА  

ПО ПРЯМОЙ В ПРОСТРАНСТВЕ 
 

Аннотация. С использованием телескопической руки манипулятора (в сферической системе 
координат) реализовано оптимальное транспортирование объекта по траектории в виде отрезка прямой в 
пространстве. Для реверсионно сконструированного оптимального управления при его непосредственном 
приложении к объекту с привлечением алгоритма решения обратной задачи динамики найдены усилия в 
приводах. 

Ключевые слова: телескопическая рука манипулятора, оптимальное управление, обратная задача 
динамики, усилия в приводах. 

 
Введение  
В интенсивно развивающихся современных технологиях, в которых используются 

манипуляторы, реализующие 3D печать, известны актуальные задачи оптимального 
управления исполнительными органами для воспроизведения рабочих траекторий при 
создании широкого ассортимента изделий. 

Методам оптимального управления системами посвящены работы [1–4] и другие.  
Реверсионное конструирование управляемого движения [5–9] может приводить в 

отдельных случаях к некоторому снижению энергетических затрат на транспортирование 
объектов. В результате конструирования появляются функционалы–критерии, 
отличающиеся от обычно применяемых в ряде типовых задач  синтеза оптимальных 
управлений. 

Основная часть 
На рисунке 1 изображена  траектория движения объекта в виде отрезка АВ прямой в 

декартовой системе координат. Телескопический манипулятор должен реализовать 
оптимальное движение при изменении координат руки в сферической системе координат 
соответственно движению схвата с объектом по заданному отрезку прямой.  

Цель исследований– на основании алгоритма обратной задачи динамики определить 
усилия в приводах телескопического манипулятора, работающего в сферической системе 
координат, для воспроизведения оптимального движения объекта по траектории в виде 
отрезка прямой в пространстве. 

Траектория, по которой оптимально перемещается объект, – прямая линия в 
пространстве. Уравнение прямой, проходящей через две точки[10], в канонической форме: 

 1 1 1 ,
x x y y z z

m n p

  
   (1) 

где 2 1 ,x x m  2 1 ,y y n  2 1 .z z p   

Направляющие косинусы для отрезка прямой (АВ) определяются  так: 
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USING A TELESCOPIC MANIPULATOR FOR OPTIMUM MOVEMENT  

OF AN OBJECT ALONG THE STRAIGHT LINE 
 

Abstract. Using the telescopic arm of the manipulator (spherical coordinate system), the optimal 
transportation of the object along the trajectory in the form of a straight line in space is realized. For reverse–
engineered optimal control with its direct application to the object with the use of the algorithm for solving the inverse 
problem of dynamics, forces are found in the drives. 
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УДК 681.5:621.432.3 

К.Н. ОСИПОВ, В.В. ГОЛИКОВА 

МОДЕЛИРОВАНИЕ СЛОЖНЫХ МАШИНОСТРОИТЕЛЬНЫХ 
ИЗДЕЛИЙ ПО РЕЗУЛЬТАТАМ АВТОМАТИЗИРОВАННЫХ 

ПРОИЗВОДСТВЕННЫХ ИСПЫТАНИЙ 
 

Аннотация. Предлагается подход к моделированию многомерных стационарных стохастических 
взаимосвязей между отдельными скалярными нестационарными процессами изменения диагностических 
параметров конструктивно сложных машиностроительных изделий в виде линейных комбинаций по 
результатам автоматизированных производственных (приемосдаточных или контрольных) 
испытаний.Предлагаемыйподход дает возможность строить корректные (адекватные измерительным 
данным) модели изделий даже в случае их нестационарности, не преобразуя в стационарные, что позволяет 
использовать результаты моделирования в задачах автоматизированной оценки технического состояния в 
режиме реального времени. На примере двигателя внутреннего сгорания показано, что использование 
предлагаемых моделей в современном производстве для описания динамики изменения технического состояния 
испытуемых изделий позволит обеспечить требуемую достоверность результатов испытаний, используя 
имеющиеся производственные мощности и квалификационный потенциал операторов испытаний.  

Ключевые слова: диагностика, испытания, моделирование, автоматизированное производство. 
 
Постановка задачи в общем виде. 
Реализация государственных программ в области создания импортозамещающих 

технологий, а также выход отечественной машиностроительной продукции на мировые 
рынки означает повышение ее конкурентоспособности (надежности, ремонтопригодности и 
т.д.), что возможно только на основеиспользования передовых интеллектуальных 
производственных технологий на всех стадиях жизненного цикла изделий, в том числе на 
стадии краткосрочных производственныхприемосдаточных и контрольных испытаний, в 
ходе которыхпо результатам контроля показателей качества продукции принимаются 
решения о соответствии характеристик готовых к эксплуатации изделий требованиям ГОСТ 
Р или ТУ. Это, прежде всего, касается сложных мехатронных изделий, машин и механизмов 
с большим количеством комплектующих элементов и выполняемых функций. 

Отдельные отечественные предприятиядля проведения краткосрочных 
производственных стендовых испытаний давно используют автоматизированные стенды со 
встроенным прикладным программным обеспечением (ПО) с функциями контроля значений 
отдельных показателей, а также системами менеджмента качества согласно ISO 9000. 
Однако большая их часть произведена за рубежом, поэтому предприятиям приходится 
тратить дополнительные средствана техническое перевооружение, а в дальнейшем и на 
специфическое обслуживание зарубежныхстендов и ППО,обучение части персонала 
зарубежным технологиям и иностранным языкам. Более того, это расходится с курсом 
правительства на внедрение импортозамещающих технологий в отечественной 
промышленностии не способствует обеспечению технологической независимости страны.К 
сожалению, имеющиеся в небольшом количестве отечественные аналоги зарубежных 
стендов, которые снабжены собственным программным обеспечением, как правило, 
уникальным и не допускающим гибкость настроек и использования для разных объектов. 
Поэтому решение задач дальнейшего совершенствования отечественных технологий и 
методов производственных испытаний, неразрывно связанных с решением задач 
совершенствования информационного, алгоритмического и математического обеспечения 
процессов испытаний по–прежнему остается актуальным.  

Обзор существующих методов решения проблемы. 
В зависимости от назначения испытания классифицируют на следующие группы: 

доводочные, исследовательские, контрольные, приемо–сдаточные и эксплуатационные [1–3]. 
Наиболее ответственными из перечисленных являются приемосдаточные испытания серийно 
выпускаемых изделий, т.к. им подвергаются все изделия, выходящие с завода–изготовителя, 
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и по их результатам формируют решении о возможности будущей эксплуатации. Кроме 
этого, эффективность и достоверность результатов приемосдаточных испытаний во многом 
определяет стоимость, конкурентоспособность, надежность, безопасность и качество 
изготовленных изделий. 

Во время приемосдаточных испытаний экспериментальным путем определяют 
количественные и качественные характеристики испытуемых изделий с целью определения 
качества их сборки и изготовления отдельных комплектующих элементов [5]. Специфика 
процесса испытаний зависит от конструктивных особенностей изделий, подвергаемых 
испытаниям, от стоимости их производства, требований заказчика и условий будущей 
эксплуатации, в том числе и климатических.  

Процесс приемосдаточных испытаний состоит из двух основных этапов. Первый этап 
служит для подготовки новых изделий к восприятию нагрузки и определения общего 
технического состояния, например, проверки целостности изоляции корпуса электрических 
машин или значений механических потерь и герметичности только что собранных 
двигателей внутреннего сгорания. Второй этап заключается в определении основных 
характеристик изделий и служит для проверки соответствия качества изделий требованиям, 
указанным в нормативной технической документации.  

В общем машиностроении качество изготовленных деталей, а также качество сборки 
изделий численно характеризуют значениями структурных параметров: точность отверстий 
под наружную обойму подшипников, конусообразность и овальность этих отверстий, 
точность отверстий под шейки валов, шероховатость сопрягаемых поверхностей, величины 
зазоров в сопряжениях и т.д. [2,3,5]. В ходе приемосдаточных испытаний непосредственное 
(прямое) измерение структурных параметров, как на первом, так и на втором этапе 
невозможно, т.к. это требует полной или частичной разборки только что собранных изделий, 
что противоречит цели и требованиям приемосдаточных испытаний. Поэтому в ходе 
приемосдаточных испытаний качество изделий оценивают путем измерения и сопоставления 
с эталонными значениями косвенных (диагностических) параметров, отражающих рабочие 
процессы изделий и функционально зависящих от структурных параметров [4,5]. При этом с 
эталонными значениями сопоставляют не отдельные измеренные значения диагностических 
параметров, а так называемые, измерительные последовательности (временные ряды), 
представляющие набор измеренных через определенный интервал времени значений 
диагностических параметров и иллюстрирующие общую динамику процессов 
функционирования изделий с течением времени. Измеренные последовательности значений 
диагностических параметров, как правило, не являются функцией времени, в ряде случаев 
измеренные значения являются функцией от заранее определенного параметра, например, 
частоты вращения ротора электродвигателя или внешней нагрузки. Графическое 
представление измеренных последовательностей диагностических параметров принято 
называть характеристикой изделия. 

Характеристики современных машиностроительных изделий, также, как и их 
классификация, достаточно разнообразны. В данной работе основное внимание уделяется 
машиностроительным изделиям, относящимся к классу энергетических и рабочих машин 
(например, ДВС, газовые турбины, компрессоры и т.д.), в ходе испытаний которых 
характеристики классифицируют на регулировочные, скоростные, нагрузочные и 
многопараметрические [5].Перечисленные характеристики машиностроительных изделий, в 
случае их использования для решения задач оценки технического состояния имеют как ряд 
преимуществ, так и некоторые недостатков. В процессе анализа характеристик должен 
принимать участие оператор испытаний, что при некоторых условиях снижает точность и 
достоверность результатов, а также повышает время и вероятность принятия неверного 
решения об отнесении годных изделий к классу негодных и наоборот, а также затрудняет 
процесс автоматизации процесса контроля.  

Еще одним существенным недостатком стандартных характеристик, используемых 
для оценки технического состояния, является их абстрагирование от времени, т.е. они не 
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позволяют оценить эволюцию процесса с течением времени и, как следствие, построить 
состоятельные оценки прогноза технического состояния изделий.  

Характеристики и подходы, используемые для решения задач обеспечения 
достоверности результатов производственных испытаний за рубежом, например, согласно 
ISO 3046–3 или ISO 15550, из–за использования классических статистических методов 
обработки измерительной информации, требующих больших объемов данных, 
предусматривают непрерывную регистрацию большого числа параметров, что приводит к 
информационной избыточности системы и увеличению временных и, как следствие, 
финансовых затрат на хранение, поиск, обработку информации; централизованным 
циклическим опросом датчиков, увеличивающим инерционность систем и ведущим к 
старению информации и снижению достоверности результатов.  использованием 
классических статистических методов обработки измерительной информации, требующих 
больших объемов данных. 

Таким образом, в настоящее время не существует единой методики получения и 
обработки экспериментальной информации, управления режимами функционирования 
испытуемых изделий, принятия решений по результатам испытаний. При этом развитие 
новых методов управления испытаниями, необходимых для обеспечения заданной 
достоверности результатов оценки технического состояния, сдерживает, в том числе 
недостаток необходимого математического обеспечения автоматизированных систем 
испытаний и, прежде всего, части, касающейся идентификации объектов и процессов 
испытаний. 

Целью работы является определение подхода к решению задачи математического 
обеспечения автоматизированных систем испытаний путем выработки методологии 
моделирования изделий по результатам измерения нестационарных последовательностей 
изменения диагностических параметров.  

К настоящему времени существует развитая теория и большое число методов и 
технологий создания различных классов моделей сложных технических объектов и их 
использования для решения прикладных задач [6,7,8,9]. Развитие цифровых технологий 
стимулирует продолжение интенсивных исследований при моделировании сложных 
объектов, появляются новые классы моделей, связанные с использованием в ранее 
неформализуемых задачах. При этом моделирование не является основной целью анализа 
измерительной информации. Технологический процесс испытаний, представляя элемент 
системы управления качествомобъектов, является этапом получения первичной информации 
в этой системе. Эмпирическая информация о текущих состояниях испытуемых объектов, 
илиизмерительная информация (ИИ), имеет, как правило, вид случайных значений 
количественно выраженных свойств объектов и их элементов, называемых показателями или 
параметрами [10]. Она отражает функциональное назначение; физическую природу; наличие 
управления; характер решаемых задач; характер обработки, передачи, хранения данных 
[5,10,11].В общем случае, цель анализа информации заключается в получении обобщенной 
(интегральной) оценки совокупности параметров, значение котороймогло бы подтвердить 
готовность изделия к будущей эксплуатации либо указать на неисправную деталь и вид 
дефекта, либо обеспечить прогноз состояния с заданной точностью и интервалом прогноза и 
т.п. [10].  

Поэтому для обработки измерительной информации на стадии испытаний 
предлагается использовать современную методологию многомерного статистического 
анализа, которая, в отличие от традиционных методов, менее чувствительна к недостатку 
априорной и искаженной измерительной информации даже в условиях нестационарности 
исследуемых последовательностей.  

Основной материал статьи. 
В каждый момент времени ,..2,1t измерительная информация представляет 

случайный 1n –вектор T
tntitt XXXx ),,,...,( ,,,1  , содержащий значения n параметров 

в этот момент времени, ni  1 – номер параметра, Tt ,,1 – дискретное время [5,10,11]. 
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Тогда упорядоченные по времени последовательности или скалярные процессы, изменения 
всех изучаемых параметров образуют единый многомерный случайный процесс с 
дискретным временем. Физическим обоснованием для объединения скалярных процессов 
изменения отдельных параметров в единый многомерный процесс служат стандартные 
характеристики изделий и их структурные параметры (говоря точнее, известные 
качественные зависимости между прямыми и диагностическими параметрами). Для 
двигателей внутреннего сгорания это скоростные, регулировочные, нагрузочные 
характеристики. 

В работах [10,11] на примере двигателей внутреннего сгорания показано, что трудно 
моделируемые физические зависимости между диагностическими параметрами могут быть 
определены статистическим многомерным анализом путем поиска стационарной случайной 
комбинации нестационарных случайных процессов, что значительно упрощает процедуру 
моделирования и последующей оценки состояния изделий. Важным свойством стационарной 
случайной комбинации нестационарных случайных процессов является ее сохранение в 
течении всего срока службы изделия, что объясняется физикой процессоввзаимодействия 
элементов системы. Другими словами, для исправных изделий динамика отдельных 
параметров в ходе испытаний одинакова, в результате чего, сохраняется баланс между 
эксплуатационными (мощностными и экономическими) показателями изделий, который 
аналитически можно записать в следующем виде: 

0 t
T x ,      (1) 

где  β – вектор коэффициентов равновесия системы. 
Возникновение неисправностей, например, вызванных ослаблением резьбовых 

соединений или использованием некачественных комплектующих, вызывает отклонениеот 
равновесного состояния (1) из–за возникновения некомпенсируемых потерь,что является 
вторым важным свойством стационарной случайной комбинации нестационарных 
случайных процессов, которое может быть использовано в качестве численного показателя, 
характеризующего техническое состояние изделий. В общем виде величину отклонения 
системы от равновесного состояния Ztможно определить по следующей формуле: 

t
T

t xz   .      (2) 

Принимая во внимание (1) и (2) задачу моделирования сложных машиностроительных 
изделий по результатам автоматизированных производственных испытаний можно свести к 
задаче оценки параметров вектора β.  

Итак, формализуем задачу отыскания численных значений параметров вектора β 
следующим образом. Пусть задан многомерный процесс измерения диагностических 

параметров исследуемого изделия T
tntitt XXXx ),,,...,( ,,,1  с заданным шагом 

дискретизации Δt. Требуется определить такой единственный вектор параметров β при 
котором линейная комбинация элементов вектора tx  будет тождественна нулю.  

Впервые для технических объектов и систем  процедура отыскания вектора весовых 
коэффициентов в линейной стационарной комбинации нестационарных процессов была 
предложена в работе [11,12,13], после чего получила дальнейшее развитие в работе 
[9].Первый шаг определения параметров вектора β предполагает построение модели 
векторной авторегрессии, связывающей текущие и прошлые значения каждого 
диагностического параметра с текущими и прошлыми значениями остальных параметров. К 
примеру, в работе [14] рассмотрен многомерный случайный процесс изменения трех 
параметров в ходе приемосдаточных испытаний, отражающих качество сборки двигателя 
внутреннего сгорания: удельного расхода топлива ge ( чкВткг / ), давления во впускном 
коллекторе H (кПа), содержания CH в отработавших газах ( 1млн ) (рис. 1). Наблюдения за 
параметрами проведены при постоянной мощности и частоте вращения коленчатого вала. 
Показано, что каждый скалярный случайный процесс может быть описан моделью: 
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априорной неопределенности построенных, например, на основе известного оптимального 
фильтра Калмана или спектрального фильтра Винера. В рамках данной работы процедура 
фильтрации исследуемых измерительных последовательностей, неразрывно связанная с 
представлением модели испытуемого изделия в пространстве состояний, не рассматривалась. 

Выводы. Анализ предлагаемого подхода к оценке технического состояния сложных 
машиностроительных изделий показал, что его использование в автоматизированном 
производстве позволит повысить достоверность принятия решений относительно годности 
изделий к их дальнейшей эксплуатации при сокращении сроков и расходов на испытания. 
Очевидно, что дальнейшее решение задач повышения достоверности решений о годности 
изделий к эксплуатации должно быть связано с определением режимов автоматизированных 
испытаний, т.е. режимов работы испытуемых изделий, обеспечивающих наискорейший 
поиск неисправностей.  
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K.N. OSIPOV, V.V. GOLIKOVA  
 

MODELING OF COMPLEX ENGINEERING PRODUCTS  
BY RESULTS OF AUTOMATED INDUSTRY TESTING 

 
Abstract. A the approach of multivariate stationary stochastic relations modeling between scalar non–

stationary processes of the diagnostic parameters of complex engineering products in the form of linear combinations 
by results of automated industry (acceptance or control) tests is proposed. The proposed approach makes it possible to 
build correct models of products even in the case of non–stationary processes without converting them into stationary 
ones. This allows the use of the modeling results in the tasks of the automated assessment of technical condition in real 
time. Using the example of an internal combustion engine, it is shown that the application of the proposed models in 
modern production to describe the dynamics of the technical condition changes of the tested products allows to provide 
the required reliability of the test results using the available production capacities and the qualification potential of the 
test operators. 

Keywords: complex engineering products, multivariate analysis, diagnostic parameters, reliability of test 
results. 
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ПРИНЦИПЫ ПОСТРОЕНИЯ ЗАМКНУТЫХ СИСТЕМ ОХЛАЖДЕНИЯ  
СУДОВЫХ ДИЗЕЛЬНЫХ ЭНЕРГОУСТАНОВОК 

 
Аннотация. Рассматриваются вопросы рационального построения замкнутых систем охлаждения 

судовых энергоустановок. Проведен анализ состава и показателей работы энергетического оборудования 
системы. Определено влияние температуры и  скорости теплоносителя на эффективность теплоотвода. 
Представлены различные варианты построения систем и необходимые для этого условия. Определены 
принципы рационального построения замкнутых систем охлаждения. 

Ключевые слова: энергоустановка судна, замкнутая система охлаждения, охлаждаемое 
оборудование, устройства теплоотвода. 

 
Введение. 
В настоящее время в судостроении широко распространены разомкнутые системы 

охлаждения энергетических установок (ЭУ), предусматривающие потребление забортной 
охлаждающей воды. Однако, в ряде случаев, такие системы не могут обеспечит 
необходимую надежность работы, например  при нахождение судна в сильно загрязненной 
акватории [1]. Кроме  данного технического аспекта в настоящее время все более 
актуальным становится экологический аспект. Разомкнутые системы оказывают 
существенное отрицательное антропогенное воздействие. В [2] показано, что при этом 
происходи уничтожение рыбных ресурсов морей. 

Основная часть. 
Решение проблемы может быть найдено во внедрении замкнутых систем охлаждения 

(ЗСО) энергоустановок. Это позволяет: отказаться от потребления забортной охлаждающей 
воды; в ряде случаев упростить систему за счет исключения контура забортной воды, 
включая трубопроводы и насосы; снизить ее стоимость; повысить надежность и 
экологическую безопасность эксплуатации. Отвод теплоты в морскую воду осуществляется в 
конечных устройствах теплоотвода (КУТ), в качестве которых могут быть использованы 
судовые обшивочные теплообменные аппараты (ОТОА), выносные трубчатые аппараты, 
бокс кулеры  и т.д [1].  

Оснащать такими системами наиболее целесообразно дизельные установки, 
отличающиеся сравнительно небольшой долей теплоты, отводимой охлаждающей водой. 

Среди факторов, оказывающих важное влияние на эффективность ЗСО, а 
следовательно, и на  возможность широкого внедрения в практику, важная роль 
принадлежит также правильному построению самой системы.  

Различные типы судов включают в себя оборудование, отличающееся по отводимой 
теплоте, температурам охлаждающих сред и по своей роли, которую оно играет в составе 
ЭУ. Важнейшими с этой точки зрения являются главные и вспомогательные двигатели. 
Вспомогательное оборудование, отвод теплоты от которого также осуществляется системой 
(холодильники провизионных камер, охлаждение компрессоров и т.д.), имеет меньшее 
тепловыделение, меньшее повышение температуры теплоносителя и большую 
рассосредоточенность на судне.  

 В [3] показано, что тепловыделение в систему охлаждения дизельной ЭУ составляет 
примерно 60% полезной мощности. Удельное количество отводимой теплоты составляет 
0,48...1,0 кВт на 1 кВт мощности дизельной установки. Примерно половина этой теплоты 
приходится на зарубашечное пространство двигателя, а остальное распределяется между 
маслоохладителем и охладителем надувочного воздуха. В таблице 1 приведены данные по 
температурным уровням охлаждающих сред некоторых видов энергетического оборудования 
судовой дизельной установки. 

Наиболее неблагоприятный режим работы КУТ и в целом ЗСО связан со случаем, 
когда забортная вода неподвижна относительно судна. При этом теплоотдача к забортной 



Секция «Т

44 _______

воде осущ
обшивочн
значение 
между ох
охлаждаем
температу
конечном 

Таб
Наименован
оборудован

Зарубашечн
пространст

дизеля 
 

Маслоохлад
ель 

Охладител
наддувочно

воздуха 
дизеля 

Электрогене
тор 

Установка
кондициони
вания возду

Холодильн
машина 

Компрессор
сжатого 
воздуха 

 

 

Технологии

___________

ществляетс
ным теплоо
коэффици

хлаждаемым
мый тепло
урой. Это п
счете, обес

блица 1  – Х
ние 
ния теплонос

итель 
 

ное 
тво 

дит
масло 

ль 
ого  

воздух 

ера
воздух 

а 
иро
уха хладаген

т 

ная 
хладаген

т 

ры 

Рисунок
от

и и инструм

__________

я при сво
обменным а
иента тепло
м теплоно
оноситель 
приводит к
спечивает с

Характерис
Охл

с температу
оборуд

м
поверхн

5

на 70...80°
вход. охлаж

н
60

н
60

м
поверхн

к 1 – Зависим
т температу

енты» 

___________

бодной ко
аппаратам 
опередачи 
осителем и
необходим

к снижению
снижение м

стика охлаж
лаждаемая ср
ура выхода и
дования, °С 

металлически
ности оборуд

55...70 

° выше темпе
ждающей вод

 

– 

0...100 

0...100 

металлически
ности оборуд

мость коэфф
урного напор

___________

онвекции. П
 экспериме
существе

и забортно
мо подава
ю требуемо
массогабар

ждаемого о
реда 
из охлаж

теплоно
°

ие 
дования 

5..

ер. 
ды 60.

–

30.

30.

ие 
дования 

 

фициента те
ра Δt  при ско

___________

Проведенн
ентальные 
нно завис
й водой 

ать в КУТ
ой теплопе
ритных пок

оборудован

ждение 
осителя, 
С 
 

теп
си

в

.15 в

..70 в

– в

..40 в

..60 в

в

еплопередачи
орости воды

__________

ные примен
исследован
ит от тем

3æ ttt   (р
Т с макси
ередающей
казателей в

ния дизельн
Охлажд

плоно
итель 

 

макс
темп
в

охл
обору

вода 5

вода 3

вода 3

вода 

вода 

вода 

вода 

и K теплообм
ы v ≈0,9...1,0 м

_______ № 3

нительно к
ния [1] пок
мпературно
рисунок 1)
имальной в
й поверхно
всей систем

ной ЭУ 
ждающая сред
симальная 
пература 
входа в 
ладитель 
рудования, 

°С 

т

50...80 

32...85 

32...55 

32 

32 

32 

32 

 

бменника  
м/с 

3 (329) 2018

к судовым
казали, что
ого напора
). Поэтому
возможной
сти, что, в
мы. 

да 
подогрев 
теплоноси
теля, °С 

6...10 

5...7 

3...10 

1...2 

2...5 

4...5 

4...5 

8 

м 
о 
а 
у 
й 
в 

 



№ 3 (329) 2

Пов
коэффици

 

 

 
Одн

0,5 м/с до
существен
соответств

Пос
температу
различные
которые м

 

 

Одн
примените
цифр свер

 

2018 _____

вышение с
иента тепло

нако эффек
о 2 м/с пр
нно (пропо
вующим ро
скольку су
урами и ра
е варианты
могут быть 

на из их 
ельно к ди
ху вниз на 

Фу

__________

скорости v 
опередачи К

Рисунок 2 –
от скорос

кт от этого
риводит к 
орциональн
остом энер
удовое эне
асходами о
ы. Рассмот
положены

Рисунок 3 – 

возможны
изельной Э
классифик

ундаментал

__________

движения 
К (рисунок

– Зависимост
сти v воды в

о оказывает
увеличени

но v2) возра
гозатрат на
ергетическо
охлаждающ
трим класс
 в основу и

Классифика

ых иллюс
ЭУ предста
кации  (рису

льные и пр

__________

воды в так
к 2).  

ть коэффици
в лабиринтн

тся ниже, ч
ию К с 4
астает гидр
а привод на
ое оборудо
щих сред, 
сификацию
их построен

ация замкнут
 

стрирующи
авлена на р
унок 3) обо

икладные п

__________

ких КУТ та

иента тепло
ом канале (Δ

чем в случа
70 Вт/(м2К
равлическо
асосов. 
ование отл
то при по

 таких сис
ния. 

тых систем 

х интерпр
рисунке 4.
означает вар

проблемы т

__________

акже спосо

 

опередачи K 
Δt ≈ 40 °С ) 

ае изменени
К) до 530 
е сопротив

личается о
остроении 
стем (рису

 

охлаждения

ретаций та
При этом
риант схем

техники и т

__________

обствует ув

K  

ия Δt. Повы
Вт/(м2К). 
вление, что

отводимой 
ЗСО ЭУ 

унок 3) и п

я 

акой класс
м последов
мы ЗСО на р

технологии

_______ 45

величению

ышение v с
При этом
о связано с

теплотой,
возможны
принципы,

сификации
ательность
рисунке 4.

и 

ю 

с 
м 
с 

, 
ы 
, 

и 
ь 



Секция «Т

46 _______

 

Пос
обеспечив
минималь
масло), до
системы с
специальн
(ПТ). Так
смешанно
(рисунок 3

В 
(централи
оборудова
объединен
насосов и 

Час
близкими 
оборудова
смешанны
объединен
теплоноси
теплообме
напоры. О

Технологии

___________

Рису
охл

строение З
вает макси
ьные габар
оставка кот
с промежут
но спроект
ким образо
ой (часть 
3 схема 1–3
современн

изованные) 
ания. При
нных схем
т.д. 
стично объ
температу
ание может
ым образом
ние. При э
ителя WПОС

енники, им
Обязательны

и и инструм

__________

унок 4 – Иллю
лаждения (н

ЗСО по п
имальный 
риты. Одн
торых к КУ
точным теп
тированных
ом индивид
оборудова
3). 
ном судос
системы 

и этом, п
мах снижа

ъединенные
урами охла
т соединят
м (схемы 2–
этом обесп
С и постепе
меющие ми
ыми услови

енты» 

___________

юстрация пр
номера схем с

принципу и
температу

ако имеют
УТ нерацио
плоносител
х достаточ
дуальная З
ания с одн

строении д
охлаждени
по сравне
ется протя

е ЗСО осно
аждающего
ться послед
–3). Наибол
печивается
енный его 
инимальны
иями таког

___________

ринципов по
соответств

индивидуа
турный на
тся такие 
нальна. В э
лем, переда
чно компак
ЗСО может
ноконтурно

достаточно
ия главног
ению с 
яженность 

овываются 
о теплонос
довательно
лее желате
я минималь
подогрев. 
ые коэффи
го соединен

___________

строения зам
вуют номера

альных одн
апор в К
теплоноси

этом случа
ача теплоты
ктных про
т быть одн
ой и част

о широко 
го и вспо
комплексо
трубопро

на соедин
сителя. В р
о (схемы 2–
ельным сле
ьный сумм
Обычно пе
циенты те
ния являют

__________

мкнутых си
ам на рисунк

ноконтурны
КУТ  и, 
ители (нап
е использу
ы к которо
межуточны
ноконтурно
ть с двухк

применяю
омогательно
м индиви
водов, кол

нении в гру
рамках рас
–1), паралл
едует счита
марный ра
ервыми по 
плопередач
тся 

_______ № 3

 

истем  
ке 3) 

ых СО (с
следовате
пример, во
уются двух
ому осущес
ых теплоо
ой, двухко
контурной 

ются объе
ого энерге
идуальных 
личество т

уппы обору
сматриваем
лельно (схе
ать последо
асход охла
о ходу расп
чи и темп

3 (329) 2018

схема 1–1)
ельно, его
оздух или
контурные
ствляется в
бменниках
нтурной и
системой

единенные
етического
схем, в

требуемых

удования с
мых групп
ема 2–2) и
овательное
аждающего
полагаются
пературные

8 

 
) 
о 
и 
е 
в 
х 
и 
й 

е 
о 
в 
х 

с 
п 
и 
е 
о 
я 
е 



Фундаментальные и прикладные проблемы техники и технологии 

№ 3 (329) 2018 _________________________________________________________________ 47 

ПОС
i WW  ,  1ii  tt  

где  Wi — расход теплоносителя через i–ое охлаждаемое оборудование;  
it  , 1it  — соответственно температура выхода охлаждающего теплоносителя с i–го 

оборудования и максимально допустимая температура входа на i+1 оборудование. 
В случае Wi<WПОС должен быть предусмотрен обвод части охлаждающего 

теплоносителя (например, схемы 2–1). Охлаждаемое оборудование не всегда удается 
расположить в схеме последовательно. 

В случае  1ii  tt  может быть использовано параллельное соединение. 
Для него должно выполняться лишь условие  

 
n,...,1iiОТ 

 tt . 

При этом затруднено дифференцированное распределение оборудования по 
температурам охлаждающего теплоносителя, как это делалось при последовательном 
соединении. Возрастает суммарный расход охлаждающей воды в системе. Для обеспечения 
требуемых расходов по параллельным ветвям системы устанавливают дополнительные 
гидравлические сопротивления (дроссельные шайбы). Данный подход наиболее удобен для 
объединения, например вспомогательного оборудования ЭУ.  

Обычно необходимо охлаждать оборудование с различными тепловыми 
характеристиками и расходами охлаждающих жидкостей, что требует комбинации 
рассмотренных принципов, то есть применения последовательно–параллельного соединения. 
При этом будут соответственно действовать ограничивающие условия, рассмотренные ранее. 

В полностью объединенной ЗСО соединение оборудования осуществляется по 
принципам, аналогичным рассмотренным выше (схемы 3–1, 3–2, 3–3). Подобно 
индивидуальным ЗСО, объединенные системы могут быть одноконтурными, 
двухконтурными и смешанными (часть оборудования с одноконтурной и часть с 
двухконтурной системой). При этом одноконтурная система также предпочтительней по 
сравнению с двухконтурной, поскольку отпадает необходимость в промежуточном 
теплообменнике, насосе, а также повышается температурный напор в КУТ. 

Помимо чисто замкнутых систем, могут быть комбинированные системы, когда часть 
оборудования ЭУ имеет ЗСО, а другая часть — разомкнутую систему. 

Таким образом, основными принципами рационального построения ЗСО являются:  
объединение охлаждаемого оборудования в группы;  
преимущественно последовательное соединение оборудования в этих группах;  
в рамках последовательного соединения расположение оборудования с учетом 

реализуемых температурных напоров и обеспечиваемых коэффициентов теплопередачи;   
уменьшение количества контуров системы;   
оптимальное распределение температурных напоров между контурами многоконтурной 

системы. 
Сюда примыкают вопросы целесообразности и возможности использования 

комбинированной системы охлаждения, оптимизации температурных напоров во 
многоконтурных системах [4] и др. 

При всем этом возможно большое количество вариантов ЗСО. Выбор наиболее 
подходящего варианта системы является довольно сложной задачей, поскольку необходимо 
рассматривать в совокупности различные частные показатели системы: массу, объем, 
затраты мощности, стоимость и т.д. Возникает проблема оценки весомости того или иного 
показателя с учетом особенностей конкретного судна. Соответствующие подходы более 
подробно изложены в [1]. 

С целью уменьшения размерности задачи выбора оптимального варианта системы, 
должен быть использован феноменологический подход, учитывающий специфику 
рассматриваемого объекта и накопленный ранее опыт. В общем случае предусматриваются 
следующие процедуры построения системы охлаждения: выбор исходных вариантов 
топологии схемы и режимов работы; расчет материальных и тепловых балансов; технико–
экономический анализ и выделение основных элементов, определяющих показатели 
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системы; с учетом этого изменение топологии и режимов работы. Обычно перечисленные 
процедуры повторяются до достижения оптимальных показателей.  
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Abstract. The problems of rational construction of closed cooling systems for ship power installations are 

considered. The analysis of the composition and performance of the power equipment of the system is carried out. The 
influence of the temperature and the velocity of the coolant on the efficiency of the heat sink is determined. Various 
options for building systems and the conditions necessary for this are presented. Principles of rational construction of 
closed cooling systems are determined. 
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ТЕОРЕТИЧЕСКАЯ МЕХАНИКА И ЕЕ ПРИЛОЖЕНИЯ 

УДК 621.865.8 
 

С.И. САВИН, Л.Ю. ВОРОЧАЕВА 
 

ОПРЕДЕЛЕНИЕ ДОПУСТИМЫХ ПОЛОЖЕНИЙ  
ЦЕНТРА МАСС ШАГАЮЩЕГО РОБОТА,  

ДВИЖУЩЕГОСЯ ПО ПЕРЕСЕЧЕННОЙ МЕСТНОСТИ  
 
Аннотация. В работе предложены подходы к определению областей пространства, в которых 

может находиться центр масс двуногого шагающего робота при различных положениях и ориентациях его 
стоп, для обеспечения его вертикальной устойчивости. Рассматривается статическое равновесие двуногого 
робота, стоящего на двух ногах на кусочно–линейной опорной поверхности. Предложена модель 
взаимодействия робота с поверхностью, которая предполагает, что контакт между стопой робота и 
опорной поверхностью происходит в четырех точках, расположенных в углах стопы, сформулированы условия 
статического равновесия. Описан численный метод определения статического равновесия робота, 
основанный на решении задачи выпуклого программирования. В результате проведенного моделирования 
установлена зависимость между ориентацией стоп робота и формой области устойчивости, а также 
определено влияние коэффициента трения на вид этой области. 

Ключевые слова: двуногий шагающий робот, опорная поверхность, область устойчивости, задача 
выпуклого программирования, статическое равновесие, конус трения. 
 

Введение 
Проблема управления двуногими шагающими роботами исследуется достаточно 

давно и подробно освещена в научной литературе. Одним из ключевых аспектов этой 
проблемы является обеспечение вертикальной устойчивости шагающего робота. Для 
решения этой задачи были разработаны различные подходы. Имеют место методы, 
базирующиеся на анализе уравнений динамики шагающего робота (такие как CWC метод, от 
англ. contact wrench cone), методы, использующие анализ динамики центра масс механизма 
(например, ZMP метод, от англ. zero–moment point) и другие [1–3]. Одна из активно 
используемых групп методов основана на планировании траектории центра масс робота, 
позволяющей гарантировать его вертикальную устойчивость при соблюдении заданного ряда 
условий [4]. Для этого используется предварительно построенная последовательность шагов 
робота [5–7]. Заметим, что планирование траектории центра масс применимо не только для 
реализации походки робота, но и в других режимах движения, например, в процессе 
вставания (вертикализации) [8–9]. Полученная таким образом траектория центра масс затем 
используется для составления и решения обратной задачи кинематики и генерации 
задающих воздействий для системы управления роботом [10]. 

Одной из проблем, связанных с планированием траектории центра масс, является 
выявление областей пространства, где может находиться центр робота так, чтобы робот при 
этом мог сохранять вертикальную устойчивость. Для случая, когда движение происходит по 
плоской опорной поверхности, эта область пространства совпадает с выпуклой оболочкой 
всех точек контакта робота и опорной поверхности без ограничений по вертикали [3, 4]. Для 
опорных поверхностей сложной формы вид этой области зависит, в том числе, от локальной 
геометрии опорной поверхности, например, от направления нормали этой поверхности в 
точке контакта. В данной работе рассмотрим подход к отысканию таких областей. 

1. Описание шагающего робота 
В работе будем рассматривать статическое равновесие двуногого робота, стоящего на 

двух ногах на опорной поверхности. В частности, поставим задачу определить, возможно ли 
статическое равновесие робота при заданном режиме контактного взаимодействия (заданных 
координатах точек контакта, коэффициентах сухого трения и направлениях векторов 
нормальных реакций). Решение данной задачи не зависит от структуры и конфигурации 
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iii y nn ˆ , 1,1,1, ˆ iii x ττ   и 2,2,2, ˆ iii x ττ  ,    (4) 

где  in̂ , 1,ˆ iτ  и 2,ˆ iτ   единичные взаимно перпендикулярные векторы, причем in̂  является 

нормальным к опорной поверхности в точке контакта,  

1,ix , 2,ix , iy   координаты точек контакта вдоль соответствующих векторов. 

Используя данные обозначения, можем записать задачу выпуклого 
программирования, которая позволит определить, существуют ли значения in , 1,iτ  и 2,iτ , 

удовлетворяющие условиям статического равновесия: 
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Заметим, что неравенства, фигурирующие в задаче (5), представляют собой 
ограничение, связанное с конусом трения. Эти условия являются нелинейными, что 
усложняет решение данной задачи [11]. Существуют ряд работ, предлагающих использовать 
линейную аппроксимацию конуса трения для линеаризации связанных с ним условий [7, 12]. 
Такая аппроксимация может быть выбрана достаточно точной и консервативной 
(гарантировать выполнение исходных ограничений).  

В общем виде такая аппроксимация может быть записана следующим образом. Пусть 

ijν   вершины многогранника, аппроксимирующего i–й конус трения: 
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Тогда составим матрицу iA  линейной аппроксимации как  ][ ,1, niii aaA  , где 
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Тогда неравенства в (5) могут быть заменены их аппроксимациями: 
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В таком случае задача (5) становится квадратичной программой и может быть решена 
методом внутренней точки [11]. 

3. Результаты численных экспериментов 
В этом разделе рассмотрим численные эксперименты по определению областей 

пространства, где может находиться центр масс механизма при различных положениях и 
ориентациях стоп робота. Будем рассматривать случай, когда стопы робота имеют длину 

3.0h  м, ширину 2.0l  м и расстояние между стопами равно 4.0s  м, а коэффициент 
трения между контактными элементами и опорной поверхностью равен 5.0i . Построим 

область значений Cr   радиус–вектора, определяющего положение центра масс робота, при 
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S.I. SAVIN, L.Yu. VOROCHAEVA 

 
DEFINITION OF ALLOWABLE PROVISIONS CENTER MASS STOCKING 

ROBOTS, MOVING AT THE CROSSED COUNTRY 
 
Abstract. In the paper, an approach to generating stability regions (regions of space where the center of mass 

of the robot can be located while the robot remains vertically balanced) is presented for a bipedal walking robot. The 
case when the robot is standing on a piece–wise linear surface with its feet having different orientations is considered. 
A contact model is presented, assuming that the robot contacts the supporting surface in eight points at the edges of its 
two feet. The condition for the vertical balance are presented and a numerical method for checking this condition is 
shown. The method is based on solving a convex program. The simulation results demonstrated dependence between 
the orientation of the robot’s feet and the shape of the stability region. The influence the friction coefficient has on the 
shape of this region is discussed. 

Keywords: bipedal walking robot, supporting surface, stability regions, convex programming, vertical 
balance, friction cone. 
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УДК 621.18 
 

В.И. КОРОБКО, Н.Г. КАЛАШНИКОВА 
 

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ОСНОВНОЙ 
ЧАСТОТЫ КОЛЕБАНИЙ ПЛАСТИНОК В ВИДЕ РОМБА  

И РАВНОБЕДРЕННОГО ТРЕУГОЛЬНИКА  
 

Аннотация. В статье приводятся результаты экспериментального определения основной частоты 
колебаний упругих пластинок в виде равнобедренных треугольников и ромбов с шарнирным опиранием по 
контуру. При проведении экспериментов использована известная установка, функциональная схема которой 
включает приборы и оборудование, применяемые при испытании строительных конструкций. Испытывались 
два комплекта пластинок–моделей: шесть моделей в виде равнобедренных треугольников и три модели в виде 
ромбов. Проводилась статистическая обработка результатов измерений. По окончательным результатам 
были построены две аппроксимирующие функции «основная частота колебаний – угол при вершине 
равнобедренного треугольника» и «основная частота колебаний – острый угол ромба». Эти 
аппроксимирующие кривые могут использоваться в дальнейшем для теоретического расчета 
параллелограммных пластинок методом интерполяции по коэффициенту формы.  

Ключевые слова: упругие пластинки в виде равнобедренных треугольников и ромбов, шарнирное 
опирание по контуру, основная частота колебаний, экспериментальные исследования. 
 

Введение  
Экспериментальные методы контроля физико–механических и геометрических 

параметров отдельных элементов строительных конструкций, зданий и сооружений, машин 
и аппаратов широко используются в строительстве и машиностроении [1…4]. В последние 
два десятилетия творческим коллективом кафедры строительные конструкции и материалы» 
ОрелГТУ была выявлена фундаментальная закономерность о функциональной взаимосвязи 
максимального прогиба балок и пластинок в нагруженном состоянии с их основной частотой 
колебаний в ненагруженном состоянии [5]. Зная эти 
функциональные связи можно по основной частоте 
колебаний определить максимальный прогиб этих 
конструкций и оценить ряд других физических 
характеристик, не прибегая к процедуре их нагружения. 
Примеры использования этой закономерности были 
рассмотрены в работах [6, …, 8]. 

Для контроля жесткости и основной частоты 
колебаний элементов конструкций в виде упругих 
пластинок этим же творческим коллективом разработан 
метод интерполяции по коэффициенту формы (МИКФ). 
Геометрической основой этого инженерного метода 
является интегральная геометрическая характеристика формы области (пластинки) – 
коэффициент формы, которая представляется контурным интегралом  

K
ds

hfa
L

  ,                                                                        (1) 

где  ds – линейный элемент контура области;  
h – перпендикуляр, опущенный из произвольной точки «а», взятой внутри области, на 

касательную, проведенную к переменной её точке (рисунок 1). 
Эта характеристика названа коэффициентом формы. Её изопериметрические свойства 

и закономерности поведения при различных геометрических преобразованиях подробно 
исследованы в монографии [9]. 

Для использования МИКФ при решении задач определения жесткости и основной 
частоты колебаний пластинок четырехугольной формы необходимо провести построение так 
называемых граничных аппроксимирующих функций: одну из границ образуют решения для 
прямоугольных пластинок с однородными граничными условиями, а другую – решения для 

a

r(   )

ds

90h



 

Рисунок 1 –  Форма области 
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тщательного юстирования их оптических осей. Контроль величины коэффициента передачи 
ведут на постоянном токе с помощью цифрового вольтамперметра, например типа В7–27А.  

Далее производится подключение фотоприемника к согласующему усилителю, а 
последнего к устройствам регистрации: электронному осциллографу 16, цифровому 
вольтамперметру 15 и частотомеру 14.  

Для реализации схемы шарнирного опирания края пластинок использованы два 
уголка 45×45×6, расположенные сверху и снизу модели и направленные соосно вдоль ее края 
обушками навстречу друг другу. Обушки уголков отстоят от края модели на 1…2 мм. После 
тщательной выверки положения уголков их закрепляют струбцинами с незначительным 
прижимом с таким расчетом, чтобы при проведении вибрационных испытаний края модели 
плотно прилегали к опорам и не отрывались от них.  

Возбуждение вынужденных колебаний в пластинке–модели осуществляется 
бесконтактным способом с помощью электродинамического возбудителя колебаний 11 (типа 
11075 Robotron). Формирование сигнала возбуждения с заданной частотой и его 
последующее усиление до требуемого уровня производится соответственно с помощью 
генератора синусоидальных сигналов 12 и усилителя мощности 13. Плавно изменяя частоту 
колебаний генератора 12, снимают амплитудно–частотную характеристику пластинки–
модели в околорезонансной области, по которой затем определяют значение ее резонансной 
частоты колебаний. Измерение частоты колебаний осуществляют частотомером 14, а 
регистрацию амплитуды сигнала, поступающего с первичного преобразователя 6, – 
цифровым вольтамперметром 15 и электронным осциллографом 16, который, кроме того, 
используется для визуального наблюдения формы механических колебаний модели. 

При необходимости по измеренной амплитудно–частотной характеристике модели–
пластинки может быть дополнительно подсчитан декремент колебаний, по величине 
которого можно судить о потерях энергии колебаний.  

Для проведения динамических испытаний были изготовлены две партии моделей–
пластинок одинаковой площади А из листового дюралюминия толщиной Н = 2 мм, в том 
числе: 

– шесть пластинок в виде равнобедренных треугольников: 
образец № 1 ( = 90о,  ah = 63,2631,63 см,  А = 0,1 м2), 
образец № 2 ( = 120о,  ah = 83,2424,03 см,  А = 0,1 м2), 
образец № 3 ( = 150о,  ah = 122,1616,38 см,  А = 0,1 м2), 
образец № 4 ( = 45о,  ah = 40,7049,14 см,  А = 0,1 м2), 
образец № 5 ( = 30о,  ah = 32,7461,09 см,  А = 0,1 м2), 
образец № 6 ( = 20о,  ah = 26,5675,31 см,  А = 0,1 м2), 

где   – угол при вершине равнобедренного треугольника; 
– три ромбовидных пластинки: 
образец № 1 ( = 60о, длина стороны а = 34,00 см,  А = 0,1 м2), 
образец № 2 ( = 45о, длина стороны а = 37,61 см,  А = 0,1 м2), 
образец № 3 ( = 30о, длина стороны а = 44,72 см,  А = 0,1 м2),  

где   – острый угол ромба. 
Материал моделей в соответствии с прилагаемым сертификатом на листовой 

дюралюминиевый прокат имел следующие физико–механические характеристики: плотность 
 = 2,71 кг/дм3, модуль упругости Е = 0,71105 МПа, коэффициент Пуассона  = 0,34.  
С учетом этих характеристик были определены необходимые для дальнейшего расчета 
физические параметры моделей: масса единицы площади m = 0,0542 кг/дм2, цилиндрическая 
жесткость D = EH3/[12(1–2)] = 53,52 Нм.  

2 Результаты измерений резонансной частоты колебаний пластинок–моделей и 
их статистическая обработка. 

При планировании эксперимента для определения достоверности результатов 
измерений использовались методы математической статистики. Детальному 
статистическому исследованию подвергались результаты измерений резонансной частоты 
колебаний для всех пластинок–моделей каждой партии. 

Испытания проводились путем многократного замера резонансной частоты 
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колебаний при различных скоростях вывода моделей на резонанс, при изменении положения 
вибровозбудителя в окрестности средней части моделей, а также с использованием обычного 
механического удара для возбуждения колебаний на собственной частоте.  

Для статистического анализа результатов многократных измерений резонансных 
частот колебаний пластинок–моделей приняты следующие данные: количество измерений n 
= 25, доверительная вероятность pд = 0,95 [11]. Результаты проведенных испытаний после их 
статистической обработки представлены в таблице 1. 

 

Таблица 1 – Результаты обработки данных вибрационных испытаний 
Параметры 
пластинок x , Гц D    0    

дx , Гц % 

Пластинки–модели в виде правильных треугольников 
модель №1 
( = 90о) 

123,73 0,3920 0,6261 0,1252 0,2586 123,73±0,26 0,21 

модель №2 
( = 120о) 

157,64 0,3398 0,5830 0,1166 0,2408 157,64±0,24 0,15 

модель №3 
( = 150о) 

278,12 0,6685 0,8176 0,1635 0,3377 278,12±0,34 0,12 

модель №4 
( = 45о) 

118,43 0,3942 0,6278 0,1256 0,2593 118,43±0,26 0,22 

модель №5 
( = 30о) 

127,68 0,3467 0,5888 0, 1178 0,2432 127,68±0,24 0,19 

модель №6 
( = 20о) 

136,63 0,2666 0, 5163 0,1033 0,2132 136,63±0,21 0,16 

Пластинки–модели в виде ромбов 
модель №1 
( = 60о) 

108,58 0,3617 0,6014 0,1203 0,2484 108,58±0,25 0,23 

модель №2 
( = 45о) 

125,63 0,5240 0,7239 0,1448 0,2990 125,63±0,30 0,24 

модель №3 
( = 30о) 

169,94 0,3630 0,6025 0,1205 0,2488 169,94±0,25 0,15 

 

Анализ приведенных в таблице 1 данных показывает, что повышение точности 
измерений за счет снижения систематических ошибок можно достигнуть только путем 
совершенствования измерительной аппаратуры. Увеличение же числа измерений не 
приводит к заметному улучшению их результатов. 

3 Построение граничных аппроксимирующих функций  –  для пластинок в 
виде равнобедренного треугольника. 

Сведем экспериментальные данные, полученные при проведении вибрационных 
испытаний пластинок–моделей, в таблицу 2, где также приводится и известное точное 
решение для пластинки в виде равностороннего треугольника [12]. 

 

Таблица 2 – Исходные данные для построения аппроксимирующих кривых  –   для 
пластинок в виде равнобедренного треугольника 

№ модели о f, Гц , с–1 
AmD

ω
=β  1/β 

Правильный треугольник 60 113,98* 716,15 22,79 4,388·10–2 
Модель № 1 45 123,73 777,42 24,74 4,042·10–2 
Модель № 2 30 157,64 990,48 31,52 3,173·10–2 
Модель № 3 15 278,12 1747,48 55,61 1,798·10–2 
Модель № 4 67,5 118,43 744,12 23,68 4,230·10–2 
Модель № 5 75 127,68 802,25 25,53 3,917·10–2 
Модель № 6 80 136,63 858,50 27,32 3,660·10–2 

Примечание – * Результаты в колонке 4 получены путем перевода размерности AmD  к 

размерности Гц. 

 
Используя результаты испытаний, приведенные в этой таблице, а также известное 
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Используя результаты испытаний моделей, приведенные в таблице 4, а также 
известное точное решение для квадратной пластинки, построена аппроксимирующая 
функция для ромбических шарнирно опертых пластинок:  

 =   AmDK730,3K226,2481,12 5,0
ff  ,                           (3) 

которая с хорошей точностью описывает экспериментальные данные. При построении этой 
кривой соблюдалось требование только ее непрерывности и монотонности изменения в 
указанных границах изменения параметра.  

Для расчета четырехугольных пластинок с помощью МИКФ совместно с 
зависимостями (2) и (3) следует использовать также зависимость  

m

D

A

К

4
f

2

пр


 ,                                                        (4) 

справедливую для пластинок в виде прямоугольника с шарнирным опиранием по контуру 
[9]. Примеры практического использования зависимостей (2) … (4) приведены в диссертации 
[13]. 

Заключение 
1. Проведены испытания шарнирно опертых по контуру моделей–пластинок в виде 

равнобедренных треугольников и ромбов с использованием первичных преобразователей 
виброперемещений на основе диодных оптопар с открытым оптическим каналом инфракрасного 
диапазона и с одним подвижным модулирующим элементом на просвечиваемой фотооснове в 
виде линейного оптического клина. 

2. После статистической обработки результатов измерений построены граничные 
аппроксимирующие функции  – , позволяющие использовать метод интерполяции по 
коэффициенту формы для определения основной частоты колебаний пластинок в виде 
параллелограммов и трапеций с шарнирным опиранием по контуру.  
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V.I. KOROBKO, N.G. KALASHNIKOVA 

 
EXPERIMENTAL DETERMINATION OF THE BASIC FREQUENCY  

OF VIBRATIONS PLATES IN THE TYPE OF THE ROMBE  
AND THE EQUAL–FREE TRIANGLE 

 
Abstract. The results of the experimental determination of the fundamental vibration frequency of elastic 

plates in the form of isosceles triangles and rhombi with hinged support along the contour are presented in the article. 
During the experiments, a known plant is used, the functional scheme of which includes instruments and equipment 
used in the testing of building structures. Two sets of plate–models were tested: six models in the form of isosceles 
triangles and three models in the form of rhombuses. Statistical processing of the measurement results was carried out. 
On the final results, two approximating functions were constructed: "fundamental frequency of oscillations – angle at 
the apex of an isosceles triangle" and "fundamental frequency of oscillations – acute angle of a rhombus". These 
approximating curves can be used later for the theoretical calculation of parallelogram plates by the method of 
interpolation by the shape factor. 

Keywords: elastic plates in the form of isosceles triangles and rhombuses, hinged support along the contour, 
fundamental vibration frequency, experimental studies. 
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В результате выражения для перемещений в несущих слоях (c ≤ z ≤ c + h1,   
–c – h2 ≤ z ≤ –c) будут:  

( ) ;kz k k
ku u z a        0,5k ka c h  , 

1 1,
k kw   ,    1

2 2 2( ) ,k k k
kR a u w    .                                         (1) 

Здесь и далее греческие индексы принимают значения 1, 2, латинские – 1, 2, 3 (если другое 
специально не указано); нижний знак k в формуле соответствует индексу 2 (номеру слоя); 

k
  – угол поворота деформированной нормали в k–м несущем слое; R – радиус оболочки. 

Частное дифференцирование по координате обозначается соответствующим нижним 
координатным индексом, следующим после запятой. Из условия непрерывности 
перемещений на границах контакта слоев в заполнителе (–c≤ z ≤ c, верхний индекс «3») 
перемещения будут:  

 
2

3
1 1 1

1

0,5 1 / ( 0,5 , )z k k
k

k

u z c u h w


   , 

   
2

3
2 2 2 2 2

1

1 / ( 0,5 , )z k k
k k

k

u z c D u D w


    ,   
2

3

1

0,5 1 /z k

k

w z c w


  ,                 (2) 

..,   1 1
2 0,25 1 /k k kD h a R R

   . 

Уравнения движения трехслойной оболочки и силовые граничные условия следуют из 
вариационного принципа Лагранжа:  

q IW А А     ,                                                      (3) 

где  W – вариация работы внутренних сил упругости,  
 АI – вариация работы сил инерции,  
 Аq – вариация работы внешних сил и упругого основания.  

С учетом поперечных сдвигов и обжатия заполнителя имеем: 

     
1

3

3
3 3 3 3

3 3 33 33 1
10

2 2
k

l
k k z z z

k h h

W R z dz R z dz dx   


 
             

 
   , 

   
1

2 2 2 2 2 1 12
1 3 2 3 1 1

0

2
2

l

q r

h
A q u q w R c h q w R c h dx  

                      
 ,        (4) 

   
13

1
1 0

2
k

l
kz kz kz kz

I k
k h

A w w u u R z dzdx 


             , 

где  k
ij  и k

ij  – напряжения и деформации, соответственно, в слоях связаны законом Гука,  

 k – плотность материала k–го слоя,  
 l1 – линейный размер оболочки в направлении координатной оси x1. 

Суммирование производится по повторяющимся греческим индексам, точки над 
перемещениями – производные по времени. 

Подставив в вариационное уравнение (3) выражения для вариаций работ (4) и, 
проведя с помощью (1), (2) стандартные преобразования, получим четыре уравнения 
осесимметричных колебаний круговой цилиндрической трехслойной оболочки в упругой 
среде:  

1 1 1 1 1( , )m m m m m m
qL u w b u L   ,    3 1 3 3( , )m m m m m m

qL u w b w L     (m = 1, 2),                    (5) 

где дифференциальные операторы  
22

1 11 13 12
1 1

m k k k
m m

k

L a a u
x

 
   


3

15 16 3
1 1

k k k
m ma a w

x x

  
      

, 

4 22
1 1

3 31 33 34 0 14 2
1 1 1

m k k k k
m m m m mk m

k

L a a a Rm w
x x

  
          


3
1 1

35 36 13
1 1

k k k
m ma a u

x x

  
     

; 
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внешние нагрузки  

1 2 1
m m

q m mL m R q  ,   3 2 3 1 10 5 ,m m m
q m m mL Rm q , h q     , 

   1 3 3

1
2 1 2

3
m m

m m mb b R h a R c c R         
; 

 mk  – символы Кронекера;  

 k
mnpa  – 49 коэффициентов, выраженных через геометрические характеристики слоев, 

параметры упругости материалов слоев и жесткости наполнителя 0 , например  

   11 31 2 / 3k
k k k ka K h a K c c     , α11 3 / 3ka K c , 

 2
α37 3 k2 α 3 2 α α2/ 3 / 3 4 / 3k

ka K B h c G B c h D   , 

  11m mm c h R   ,  1 1 3 22 0,25m m
mb R I I       ,  3 1

m mb b , 

   21 2 2
2 1 1 3 1 5 3 2 22 2 (1 / (1 /m m m m

m mb R I R a R I R a R I B I                , 

1 1
k

k

h

z
I dz

R
   
      

3

2

2 1 / 1
h

z
I z c dz

R
     

      3 1
k

k
k

h

z
I z a dz

R
   
   . 

Силовые граничные условия формулируются из требования выполнения в каждой 
точке координатной линии равенства заданных обобщенных усилий и моментов внутренним 
силовым факторам, входящим в выражения контурного интеграла вдоль той же линии. 
Иначе говоря, на каждом торце формулируется по восемь граничных условий. 
Кинематические условия свободного опирания торцами на жесткие неподвижные опоры 
будут:   

1 1 11, , 0k k kw u w        1, 2k  .                                              (6) 

В случае жесткой заделки должны выполняться требования 

1 2 1, 0k k k ku u w w         1, 2k  .                                             (7) 

Начально–краевая задача определения перемещений замыкается добавлением к 
уравнениям движения (5) профилей начальных перемещений и скоростей срединных 
поверхностей несущих слоев: 

0 0( , 0) ( ), ( , 0) ( )k k k ku x u x u x u x          , 

0 0( , 0) ( ), ( , 0) ( )k k k kw x w x w x w x         α, , 1, 2k  .                              (8) 

Собственные колебания  
Одной из самых важных с практической точки зрения задач динамики является 

исследование спектра частот собственных колебаний. Ее решение позволяет определить 
собственные частоты и формы, знание которых необходимо для решения задач о колебаниях 
трехслойных конструкций при различных видах внешних воздействий.  

Рассмотрим задачу о собственных колебаниях трехслойной цилиндрической оболочки 
в упругой среде. Уравнения движения получим из (5), положив оставляющие нагрузки 

2 2
1 3 0q q  :  

1 1 1 1( , ) 0m m m m mL u w b u  ,  3 1 3( , ) 0m m m m mL u w b w    (m = 1, 2).                                      (9) 

Граничные условия (6) свободного опирания торцами на жесткие неподвижные опоры 
будут автоматически выполняться, если решение принять в виде разложения в одинарные 
тригонометрические ряды:  
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  .                                  (10) 
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Подставив соотношения (10) в систему уравнений свободных колебаний (9), получим 
систему обыкновенных дифференциальных уравнений для определения функции времени 

imT  (i = 1, 2, 5, 6). В матричном виде она будет следующей: 

      0P T B T  ,                                                      (11) 

где  [P] – квадратная матрица четвертого порядка, составленная из коэффициентов pij, 
зависящих от волнового параметра m;  

[B] – диагональная матрица четвертого порядка с элементами Bmij; T и T  – 
векторы, сформированные из искомых функций времени  
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. 

Предполагая, что все точки конструкции совершают колебания с одинаковой 
частотой, решения системы уравнений (11) для определения функции ( )imT t  принимаем в 

виде 
( ) sin(ω α )im im m mT t A t  ,                                                           (12) 

где  imA , m, m – амплитуды, частоты и начальные фазы колебаний.  

Подставив выражения для перемещений (10) и функции (12) в систему (11), придем к 
обобщенной задаче на собственные значения.  

     2ωP A B A  .                                                             (13) 

Обозначив  = – 2 и обратив матрицу B, т. к. она не является вырожденной, 
осуществим переход от (13) к стандартной задаче на собственные значения: 

    λR A A ,        1
R B P

 .                                                    (14) 
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По найденным значениям ωi
2 (i = 1, …, 4) вычисляется собственный вектор {Ai}. При 

этом, предполагая, что собственные значения не являются кратными, в матрице R – E 
среди всех ее миноров четвертого порядка выбирается тот, который имеет наибольшее по 
модулю значение, то есть вычисляется номер строки, подлежащей исключению в (14), и 
номер столбца, определяющий правую часть соответствующей системы уравнений 
четвертого порядка. В итоге находится тот компонент вектора {Ai}, относительно которого 
будет произведена нормировка и получены коэффициенты собственных форм колебаний.  

В данном случае для каждого индекса m будем иметь четыре частоты mp (p = 1, …, 
4). При граничных условиях (7) вид решения (10) будет другой. 

Вынужденные колебания 
Вынужденный колебания описываются уравнениями (5). Граничные условия (6) будут 

автоматически выполняться, если принять искомые перемещения в виде (10) и разложив 
компоненты нагрузки в ряд  

2 2
1 1

0

π
cos ( )m

m

mx
q q t

L





  ,  2 2
3 3

0

π
sin ( )m

m

mx
q q t

L





  .                               (15) 

Подставив выражения (15) в (5), получим систему обыкновенных дифференциальных 
уравнений для определения функции времени imT . В матричном виде она будет следующей:  

       P T B T Q   ,                                                    (16) 

где параметры вектора нагрузки  Q  определяются выражением 

 
2

2 1

2 2
2 3 2 1 21

0

0

0 5

m

m m

m Rq
Q

Rm q , h q

 
 
   
 

     

. 

Тогда искомые функции времени ( )imT t  (сопоставить с (10))(i = 1, 2, 5, 6) можно 

представить в виде разложения в конечный ряд по системе собственных ортонормированных 
функций времени ζmk :  

( ) δ ζim mik mk
k

T t    (i, k = 1, 2, 5, 6),                                           (17) 

где  δmik  – коэффициенты форм. 

Подставляя выражение (17) в уравнения (16) и используя свойство ортогональности 
собственных форм колебаний, приходим к четырем независимым уравнениям аналогичным 
(3.35) относительно функций времени ζmi :  

 2
ζ ω ζ ( )mi mi mi mi iq T t   ,                                                   (18) 

где  miq – компоненты приведенной нагрузки 
2 2 2

2 1 2 2 3 2 1 21 6

1 2 2 2 1 2 2 2
1 1 1 2 3 5 1 6

δ 0 5 δ

δ δ δ δ
m m i m m m i

mi
m i m i m i m i

m Rq Rm q , h q
q

b b b b

    
  

     (i = 1, 2, 5, 6). 

Общее решение дифференциального уравнения (18)  [14] 

ζ ( ) cos( ) sin( )mi mi mi mi mit A t B t    
0

sin( ( )) ( )
t

mi
mi t

mi

q
t T d    

 
  .                      (19) 

Искомые перемещения (10) представляются в виде сумм произведений ζmi  (19) на 

соответствующие коэффициенты и исходные базовые функции.  
Внезапно–приложенная нагрузка. Пусть на исследуемую трехслойную 

цилиндрическую оболочку действует внезапно приложенная осесимметричная нагрузка, 
которую можно записать в следующем виде  
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2 2
0( , ) ( ) ( )l laq x t q x H t   (l = 1, 3).                                                  (20) 

Коэффициенты разложения этой нагрузки в ряд будут 
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Решение уравнения (18) с учетом коэффициентов (21) запишется в виде  

ζ ( ) cos( ) sin( )mi mi mi mi mit A t B t    
2

1 cos( )mi
mi

mi

t
q

 


 .                                 (22) 

Искомые перемещения u1, u2, w1, w2 при нагрузке (20) описываются формулами (15), с 
учетом выражений для функций времени (17) и (22). В случае воздействия равномерного 
внутреннего давления интенсивностью 2

3 0 constaq q   ( 2
1 0q  ) коэффициенты (21) 

запишутся в виде 

  2 0 0
3

2 ( )
1 cos πm

q H t
q m

m
 


. 

Импульсная нагрузка. Пусть на исследуемую трехслойную цилиндрическую оболочку 
в начальный момент времени действует осесимметричная импульсная нагрузка: 

2 2( , ) ( ) ( )l l iq x t q x t  .                                                       (23) 

где  δ(t) – функция Дирака. 
Коэффициенты разложения нагрузки (23) в ряд будут 
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Функция времени ζ ( )mi t  с учетом (24) запишется в виде  

ζ ( ) cos( ) sin( )mi mi mi mi mit A t B t    
sin( )mi

mi
mi

t
q




 .                           (25) 

Таким образом, искомые перемещения u1, u2, w1, w2 для нагрузки (23) описываются 
формулами (5), с учетом выражений для функций времени (25). 

В случае воздействия импульса равномерного гидростатического давления 
интенсивностью 2

3 1 constiq q   коэффициенты (24) будут 
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3

2 ( )
1 cos πm
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q m
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
 


. 

Численное исследование 
Численные результаты здесь и далее получены для круговой трехслойной 

цилиндрической оболочки в упругой среде Винклера, свободно опертой торцами на жесткие 
неподвижные опоры. Несущие слои – сплав Д16Т, заполнитель – фторопласт [15]. 
Относительные толщины слоев: h1 = h2 = 0,02, c = 0,025. Внутри оболочки упругая среда 
отсутствует 2

0 0  , снаружи действует упругая среда с 1
0 0   . Линейные перемещения 

отнесены к радиусу оболочки, время измеряется в секундах.  
Первые три собственные частоты оболочек различной длины, несвязанных с 

окружающей средой Винклера, 0p, 1p, 2p (p = 1, …, 4, 0 0  , L = 2R, 10R) приведены в 

таблице. Для частот 0p длина оболочки не влияет на их величину, для остальных – 
увеличение длины приводит к уменьшению низших частот.  

 

Таблица 1 – Частоты собственных колебаний mp (с
–1) 

p\m 
L = 2R L = 10R 

0 1 2 0 1 2 
1 0 2822 3021 0 938 1774 
2 3602 6068 11433 3602 3655 3859 
3 4478 7233 12203 4478 4621 5024 
4 32958 32964 32993 32958 32958 32959 
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D.V. LEONENKO 

 
OSCILLATIONS OF CYLINDRICAL SANDWICH  SHELL IN ELASTIC 
MEDIUM UNDER ACTION OF AXISYMMETRIC DYNAMIC LOADS 

 
Abstract. The oscillations of a three–layer cylindrical shell in an elastic medium under the action of sudden and 

impulse loads are considered. Kirchhoff–Love hypotheses are accepted for isotropic bearing layers. In a thicker filler, 
the work of transverse shear and the reduction in thickness are taken into account. The change in displacements is 
taken to be linear in the transverse coordinate. The elastic medium is described by the Winkler’s model. Equations of 
are derived motion by energy methods. A number of analytical solutions are obtained and their numerical analysis is 
carried out. 

Keywords: cylindrical shell, axisymmetric oscillations, impulse loads, impact loads, elastic medium. 
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МАШИНОСТРОИТЕЛЬНЫЕ ТЕХНОЛОГИИ 
И ОБОРУДОВАНИЕ 

УДК 621.923.01 
 

А.А. БАРЗОВ, А.Л. ГАЛИНОВСКИЙ, Е.В. ГОЛУБЕВ,  
А.А. ИЛЮХИНА, Н.К. КОБЕРНИК, О.В. ЗАРУБИНА 

 
АНАЛИЗ ВЗАИМОСВЯЗАННОСТИ ФУНКЦИОНАЛЬНО –

ФИЗИЧЕСКИХ ВОЗМОЖНОСТЕЙ АДДИТИВНЫХ  
И УЛЬТРАСТРУЙНЫХ ТЕХНОЛОГИЙ 

 
Аннотация. Предполагается формализованный подход к анализу синергетического повышения 

возможностей прогрессивных производственных технологий, основанный на количественном определении их 
взаимосвязанности. На примере характерной и весьма популярной в настоящее время аддитивной технологии 
– селективного лазерного сплавления и ультраструйной обработки материалов установлена их достаточно 
тесная взаимосвязанность, обеспечивающая расширение их функциональных возможностей при решении 
конкретных конструкторско–технологических задач. Показано, что важное значение имеет 
взаимодополнение и взаимосвязанность современных технологий, прежде всего в части их совместной 
комплексной реализации в сфере инновационных областей развития техники и технологий. При этом 
отмечено, что у ряда традиционных технологий, таких как ультраструйная обработка материалов, по–
прежнему не раскрыт их научно–практический потенциал, который позволяет расширить их области 
применения в машиностроении и смежных отраслях.  

Ключевые слова: аддитивные технологии, селективное лазерное спекание, ультраструйная 
диагностика, формо– и структурообразование. 

 
Введение. 
Одним из резервов повышения результативности современных формо– и 

структурообразующих технологий является реализация их совместного научно–прикладного 
потенциала при решении конкретных производственных задач. Для ряда традиционны 
технологий потенциал их совершенствования и развития в значительной степени исчерпан. 
Последнее время в ряде работ рассматривались возможности достижения синергетического 
эффекта от совместной реализации двух и более технологий, при выполнении ряда 
технологических операций и процессов [1–4]. С другой стороны, последнее время, внимание 
ученых сосредоточено на инновационных технологиях к которым, в частности, принято 
относить аддитивные и ультраструйные технологии. Таким образом, для опережающего 
развития техники и технологий целесообразно рассматривать не только новые технологии 
сами по себе, но их комбинации, т.е. гибридные и комбинированные технологии и 
технологические процессы. В этой связи, можно утверждать, что тема исследования, 
результаты которого представлены в данной статье является актуальной.  

Основная часть 
В исходном приближении последовательное использование совокупности 

операционных технологий в маршруте изготовления некоторого изделия можно оценить 
произведением вероятностей их прямого взаимодействия, без учета физически 
обусловленного вполне реалистичного взаимовлияния. Это взаимовлияние по сути 
структурно обеспечивает увеличение функционально–физических возможностей  
рассматриваемых технологий и с позиций теории надёжности играет роль резервных  
(дублирующих) элементов [5, 6]. Для количественной оценки степени взаимовлияния 
анализируемых технологий, уровня взаимопроникновения их физически доминирующих 
характерных факторов и отличительных признаков можно использовать коэффициент 
функциональной связности  ܭсв: 

свܭ                                                ൌ сܰв/ оܰб                     (1) 
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свܭ                                 ൌ3 / 6 =0,5      (5) 
Фактически это означает, что возможности УСТ эффективно реализуются  и 

обеспечивают 50% ожидаемый рост качества базовой технологии СЛС, главным образом за 
счёт новых способов получения ВДП и УС–контроля параметров состояния поверхностного 
слоя материала деталей, полученных СЛС. Особенно важны эти положения для 
эксплуатации деталей в условиях жесткого фрикционного нагружения. 

Согласно предложенной на рисунке 3 структурной схеме, обобщённая 
результативность взаимодействия технологий СЛС и УСТ может быть описана 
вероятностной моделью вида 

  СܲЛС ൌ ஼ܲ ∙ ሾ1 െ ሺ1 െ Пܲ)ሺ1 െ УܲМሻሺ1 െ УܲРሻሿ ∙ ሾ1 െ ሺ1 െ Дܲሻሺ1 െ УܲДሻሿ         (6) 
где:  СܲЛС – итоговая вероятность качественной реализации процесса СЛС с масштабным 
использованием возможностей УСТ. 

На рисунке принято: 
Пܲ – вероятность получения порошка для СЛС по традиционным технологиям: 

газораздувом расплава, механическим диспергированием и т.д.; 
УܲМ – вероятностная оценка результативности получения ВДП путем УС– 

диспергирования твердотельной мишени из соответствующего сплава; 
УܲР – вероятность получения высококачественного ВДП в результате  

ультраструйного гидродинамического воздействия на расплав исходного металла (сплава); 
Сܲ – вероятность качественной реализации процесса формо– и структурообразования 

детали путем СЛС  исходного порошка, с учетом специфики его подачи, предварительной 
активации и т.д. 

Дܲ – вероятность получения качественной детали методом СЛС без дополнительных 
физико–технологических усовершенствований; 

УܲД– вероятностная оценка эффективности реализации функциональных 
возможностей ультраструйной диагностики (УСД) качества материала детали, полученной 
по технологии СЛС. 

Для проведения численных расчётом параметры модели (6) должны быть определены 
количественно. Эту весьма трудоёмкую и трудноформализуемую процедуру можно 
осуществить путём рациональной комбинации трёх основных подходов: 

1. Математической обработкой имеющегося статистического материала, объём 
которого на сегодняшний день весьма ограничен из–за новизны рассматриваемой проблемы. 

2. Постановкой прямых целенаправленных экспериментов, дополненных 
результатами пока фрагментарного математического моделирования, например методом 
конечных элементов. Однако совершенство этого подхода еще не достигло    требуемого 
функционального уровня. 

3. Путём масштабного применения аппарата экспертно–аналитического анализа 
(ЭАА), как исходного варианта количественной оценки значений структурных элементов 
моделей типа (4) на основе обобщения мнений компетентных экспертов [11, 12]. 

Именно этот подход на начальном этапе рассмотрения проблемы повышения 
эффективности базовой технологии путём ее наполнения элементами других прогрессивных 
технологий на сегодняшний день представляется наиболее реалистичным.  

Приведём численно–методический пример расчета степени повышения качества СЛС 
за счёт реализации возможностей УСТ. Допустим, что согласно  принципу равных влияний 
все значения в (6) равны и составляют величину ܲ~0,8, полученную путём обобщения 
результатов ЭАА. 

Тогда вероятностный уровень получения детали по классической технологии СЛС 
составляет всего 50%, а с использованием УСТ он возрастает до ~75%. Это обстоятельство 
ещё раз подчёркивает научно–прикладную значимость создания комбинированных физико–
технологических цепочек при изготовлении высокоответственных деталей. Введение 
дополнительных операций УС–контроля качества порошка и образцов–свидетелей 



№ 3 (329) 2

формируе
вероятнос
является и

Зам
достаточн

     
Это

струеформ
мишени п
других жи

В ц
следующи

где:  ݇ФТ
существен

На 
для осущ
полученны
каналов 
ультрастру
образцы д
трехмерно
MeltMaste

 

  

Рисунок 4 

      

2018 _____

емых непо
сть получе
именно сам
метим, что
но высоким

                  
о объясняе
мирующих 
при ультра
идкостей [1
целом на с
им      соотн

Т – физи
нно больше
рисунке 4

ществления 
ые по техн
фокусирую
уи на этап
двух типо
ой печати с
er3D–550, пр

– Образцы ф
по

  

Фу

__________

средственн
ния высок
м процесс С
о влияние 
м значением

                 
ется тем, ч
элементов
аструйной 

13, 14]. 
сегодняшни
ношением: 

          

ико–технол
е единицы:
4 приведены
операций

нологии СЛ
ющих тру
пе их конс
оразмеров 
сложнопро
роизводств

а            

фокусирующи
олученные ме

ундаментал

__________

но в проц
кокачествен
СЛС (рисун
СЛС на 

м ܭсв: 
свܭ            

что СЛС  в
в (ГУС и 
обработке

ий день   в

                  

логический 
 ݇ФТ ൐ 1,0
ы примеры
й по ультр
ЛС. Метод 
убок по 
структорск
фокусирую

офильных о
ва АО «НПО

                      

их трубок дл
етодом СЛС

льные и пр

__________

цессе СЛС
нной детал
нок 3). 
результати

~ 2/5=0,4
весьма эфф
ГАУС), а 
е различны

взаимосвяз

свሺСЛСܭ   

коэффиц
. 
ы получени
раструйной
СЛС испо
критерию 
о–технолог
ющих тру
ответственн
О «ЦНИИТ

                      
 

ля ультрастр
С: а – типора

икладные п

__________

С  основн
ли до ~95

ивность  

фективно п
также эро
ых гидрот

занность С

	 ← УСТሻ ൌ

циент, кот

ия элемент
й обработк
ользовался 
обеспече

гической о
убок изгот
ных издели
ТМАШ». 

                     

труйной обра
азмер №1, б–т

проблемы т

__________

ой детали
5%, так ка

УСТ  так

 
при обрабо
озионносто
ехнологиче

ЛС и УСТ

ൌ ݇ФТ ∙ свሺܭ

торый на 

тов струефо
ке и диагн
для отрабо
ения макс
отработки. 
авливались
ий из метал

            б 

ботки и диа
типоразмер №

техники и т

__________

и резко ув
ак «слабым

кже харак

            
отке и изг
ойкой твер
еских сред

Т можно пр

ሺУСТ ← СЛ

сегодняш

ормирующ
ностике м
отки форм
симальной 
Эксперим
ь на уста
аллических 

агностики м
№2 

технологии

_______ 77

величивает
м звеном»

теризуется

             (7)
готовлении
рдотельной
д, воды и

редставить

ЛСሻ 
(8)

шний день

щего тракта
материалов,
мы рабочих

скорости
ментальные
ановке для
порошков

 

атериалов, 

и 

т 
» 

я 

) 
и 
й 
и 

ь 

                 
) 
ь 

а 
, 
х 
и 
е 
я 
в 

 



Машиност

78 _______

Нео
рациональ
уровня мн
технологи
правом сл

 п
 о

чистого во

 и
 ф

изделий м

 т
функцион

При
качества п
чертой, ка
материала

 

 а – фити
(диагности

 
Вес

принципов
другими м
наплавка 

троительны

___________

обходимо 
ьное сочета
ногих, в то
иям, реализ
ледует отне
получение и

осаждение 
ольфрама; 

изготовлени

формо– и 
методом фи

ехнологии 
нальных пок
ичём коэфф
продукции 
ак правило
а и констру

Р

инг Российско
ируемая зона

сьма хара
в аддитив
методами 
различных

ые технолог

__________

подчеркн
ание предс
ом числе с
зующим пр
ести: 
изделий из 

 деталей 

ие корковы

структуро
ильтрацион

инженери
крытий, в ч
фициенты 
обычно ле

о является 
укции из не

Рисунок 5 – П
форм

ой космическ
а) для УСД, б

EnDOtec

актерным 
вных форм
изготовлен
х покрытий

гии и обору

___________

нуть, что 
тавляет соб
овременны
ринцип адд

композици

осаждение

ых деталей 

ообразовани
ного осажд

ии поверхн
частности  
связности 
ежат в пред
пространст
его. 

Примеры реа
мо– и структ
кой обсерват
б – образец ду
 DO*390N) в

примером
ма– и стру
ния и конт
й с исполь

удование 

___________

анализ 
бой малоза
ых аддитив
итивного ф

ионных ма

ем из газо

плазменны

ие  тепло
дения; 

ности, обе
послойное
этих техно
делах  ܭсв=
твенно–вре

ализации воз
турообразую
тория «Милли
уговой наплав
в среде защит

м реализ
уктурообра
троля дета
ьзованием 

а 

б 

___________

взаимосвя
атратный р
вных техно
формо– и с

атериалов м

овой фазы

ым напылен

оизоляцион

еспечивающ
е электроду
ологий с др
=0,25–0,65
еменное со

зможностей
ющих технол
иметрон» (пр
вки (с примен
тного газа (1

зации осн
азующих т
алей, являе
возможно

__________

язанности 
езерв повы
ологий. При
труктурооб

методами н

ы, наприме

нием; 

нных и др

щие посло
уговое окси
ругими спо
, а их осно
овмещение 

й аддитивны
логий: 
роект “Спект
нением порош
00 % Ar  

новных ф
технологий
ется послой
остей числ

_______ № 3

технологи
ышения тех
ичём поми
бразования

намотки и в

ер особо х

ругих мат

ойное фор
идирование
особами об
овной отли
процесса 

ых  

тр–М”) с фр
шковой прово

физико–дом
й, их связ
йная элект
лового про

3 (329) 2018

ий и их
хнического
имо СЛС к
я с полным

выкладки; 

химически

ериалов и

мирование
е. 
беспечения
ичительной
получения

 

агментом 
олоки марки 

минантных
занности с
тродуговая
граммного

8 

х 
о 
к 
м 

и 

и  

е 

я 
й 
я 

х 
с 
я 
о 



Фундаментальные и прикладные проблемы техники и технологии 

№ 3 (329) 2018 _________________________________________________________________ 79 

управления этим процессом [15, 16]. Именно сочетание технических возможностей наплавки 
с ее эффективным управлением обеспечивает необходимую функциональную гибкость 
данного процесса аддитивного формирования покрытий в сочетании с широкими 
технологическими возможностями, которые в комплексе обеспечивают требуемые высокие 
эксплуатационно–ресурсные характеристики поверхностного слоя изделий ответственного 
назначения.  

На рисунке 5 приведены некоторые типовые примеры реализации возможностей 
аддитивных формо– и структурообразующих технологий, дополненных иллюстрацией 
результативности ультраструйной диагностики их качества.  

Достаточно оперативная оценка свойств материала по результатам их УСД позволит 
вполне обоснованно судить о рациональности и стабильности технологического обеспечения 
качества  изделий ответственного назначения, полученных с использованием аддитивных 
технологий, в частности методом СЛС (рисунок 5, а). 

Заключение 
Таким образом, предлагаемый подход к изучению проблемы взаимодополнения 

технологий и их функциональной взаимосвязанности обладает высоким потенциалом 
научно–прикладной значимости. Особенно важна его полномасштабная реализация в сфере 
инновационных контрольно–диагностических и других информационно–физических 
технологий, как доминантной компоненты в системе обеспечения качества формо– и 
структурообразующих методов получения деталей и производства изделий ответственного 
назначения. 
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OPPORTUNITIES OF ADDITIVE AND ULTRA–JET TECHNOLOGIES 
 

Abstract. A formalized approach is proposed for analyzing the synergistic enhancement of the possibilities of 
progressive production technologies, based on a quantitative definition of their interconnectedness. Using the example 
of the additive technology that is very popular nowadays – selective laser fusion and ultrasonic treatment of materials, 
their close interconnection is established, which ensures the expansion of their functionality in solving specific design 
and technological problems. It is shown that the complementarity and interconnectedness of modern technologies is 
important, first of all, in terms of their joint integrated implementation in the field of innovative fields of technology 
development. At the same time, it is noted that a number of traditional technologies, such as ultra–jet processing of 
materials, still do not reveal their scientific and practical potential, which allows to expand their fields of application in 
mechanical engineering and related industries.  
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УДК 621.914.5 
 

К.Ю. ПЕШЕХОНОВ, А.С. ТАРАПАНОВ 
 

ПРОГНОЗИРОВАНИЕ ШЕРОХОВАТОСТИ  
ПРИ ФОРМООБРАЗОВАНИИ ЗУБЬЕВ СПИРОИДНЫХ КОЛЕС  

 
Аннотация. В статье рассматриваются задачи прогнозирования шероховатости поверхности зубьев 

спироидного колеса от технологических условий обработки. Проведен анализ имеющихся результатов 
исследований по определению величины шероховатости при различных режимах формообразования. Показано, 
что для определения составляющего профиля шероховатости обусловленного геометрией и кинематикой 
перемещения рабочей части инструмента целесообразно использовать математическое отображение для 
нарезания зубьев спироидного колеса фрезой с ассиметричным профилем. Установлено, что по мере врезания 
зубьев фрезы в материал детали режущие кромки формируют сегмент определенной формы, анализ 
взаимного положения которых и позволяет вычислить составляющую h1 шероховатости. Величина 
шероховатости формируемая боковым режущим лезвием с 30˚ профилем практически в 2 раза меньше, чем 
шероховатость формируемая боковым режущим лезвием с профилем в 10˚. Максимальная величина 
шероховатости для модулей 2 – 2,5 не превышает 9 – 12 мкм. 

Ключевые слова: спироидная передача, шероховатость, кинематическая схема резания. 
 
Введение 
Среди разновидностей спироидных передач наибольшее предпочтение в 

использовании отдается цилиндрическим спироидным передачам, которые широко 
применяются в приводах машин [1–3]. Это объясняется удобством изготовления и монтажа 
конструкции передачи. А также цилиндрические спироидные передачи берут преимущество 
перед традиционными передачами с перекрещивающимися осями в повышенной 
нагрузочной способности, надежности и долговечности, обусловленные улучшенными 
показателями геометрии и кинематики зацепления; высокой стойкости к ударным, 
вибрационным нагрузкам и кратковременным перегрузкам; больших, в сравнении с 
червячными передачами, КПД и износостойкости; компактности, плавности хода и 
бесшумности работы; возможность исключения обратного хода (самоторможение) [4].  

По данным передачам в настоящее время имеется не мало исследований [5], но нет 
конкретных данных по технологии изготовления в доступной технической литературе. При 
ознакомлении с литературой, в которой освещены исследования спироидных передач, 
выявлен недостаток сведений о шероховатости зубьев спироидных колес. 

Основная часть 
Цилиндрическая спироидная передача имеет в геометро–кинематических 

характеристиках особенность, а именно большой коэффициент перекрытия Ɛ в зацеплении, в 
частности до 10 и более процентов зубьев спироидного колеса участвуют в одновременном 
зацеплении с витками спироидного червяка. В свою очередь у спироидного червяка в 
зацеплении находятся почти все витки. 

 Параметры рабочего зацепления цилиндрической спироидной передачи совпадают с 
параметрами станочного зацепления, так как реализуются по второму принципу Оливье 
(когда рабочий и производящий червяки идентичны друг другу) [6]. Соответственно при 
нарезании зубьев спироидного колеса у спироидной червячной фрезы участвуют почти все 
витки. Из–за этого задействовано в резании большое количество одновременно работающих 
зубьев. К примеру, во время резания у цилиндрической спироидной фрезы задействованы 6 
витков и работают поочередно, то 2, то 3 зуба на одном витке, соответственно нагрузку на 
технологическую систему будут оказывать то 12, то 18 зубьев. Такое количество зубьев и их 
численная переменность приводят к весомому влиянию на точность формообразования 
зубьев спироидного колеса. 

Процесс нарезания зубьев спироидного колеса требует проведения прогнозирования 
шероховатости. Анализ имеющихся результатов исследований по формированию 
шероховатости поверхностей при различных методах обработки позволяет расчетно–
аналитическим путем определить основные параметры шероховатости и связать их с 
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параметрами режима резания и эксплуатационными характеристиками получаемой 
поверхности. Средняя высота профиля шероховатости в общем случае при всех методах 
механической обработки определяется равенством [7]: 
                                                      4321 hhhhRz  ,                                                 (1) 
где

  
h1 – составляющая профиля шероховатости, обусловленная геометрией и кинематикой 

перемещения рабочей части инструмента; 
 h2 – составляющая профиля шероховатости, зависящая от колебаний инструмента 
относительно обрабатываемой поверхности; 
 h3 – составляющая профиля шероховатости, обусловленная пластическими 
деформациями в зоне контакта инструмента и заготовки; 
 h4 – составляющая профиля шероховатости, вносимая шероховатостью рабочих 
поверхностей инструмента. 

Составляющая профиля шероховатости h2 при обработке червячной фрезой [8]: 

                                                           ,
)(

)(2 j

P
h

                                                          (2) 

где  P(τ) – мгновенное значение силы резания на всех работающих зубьях в момент 
времени τ,  j – жесткость технологической системы. 

Пластическая деформация обрабатываемого материала в зоне резания приводит к 
увеличению высоты образующей шероховатости на величину h3, которая рассчитывается по 
формуле: 
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где  bсдв – величина пластического оттеснения. 
Величина пластического оттеснения определяется по формуле: 
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где  τсдв – прочность обрабатываемого материала на сдвиг, 
 σТ – предел текучести обрабатываемого материала, 
 ρ – радиус скругления режущей кромки. 

Для определения величины h1, используя математическое отображение 
кинематической схемы резания, устанавливаем координаты точек при перемещения одного 
витка фрезы на один оборот для определения профиля сегмента. Математическое 
отображение схемы нарезания зубьев спироидного колеса при обработке спироидной 
червячной фрезой отражается зависимостью [9]: 
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где  X, Y, Z – координаты точек режущего лезвия при формировании зубьев спироидного 
колеса;  

Δh – параметр режущей кромки;  
ro – величина смещения координат центра спироидной фрезы;  
φ – угол поворота фрезы относительно оси Z;  
(0,5·m·φ) – винтовой параметр;  
ψ – угол делительного движения между червячной фрезой и зубчатым колесом;  
 tan(α1,2) – угол наклона левой и правой кромки зуба фрезы;  
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Заключение 
Установлено, что по мере врезания зубьев фрезы в материал детали режущие кромки 

формируют сегмент определенной формы, анализ взаимного положения которых и позволяет 
вычислить упомянутую составляющую шероховатости. Величина шероховатости 
формируемая боковым режущим лезвием с 30˚ профилем практически в 2 раза меньше, чем 
шероховатость формируемая боковым режущим лезвием с профилем в 10˚. Максимальная 
величина шероховатости для модулей 2 – 2,5 не превышает 9 – 12 мкм. 
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K.Yu. PESHEKHONOV, A.S. TARAPANOV 
 

PREDICTION OF ROUGHNESS IN THE FORMING  
OF THE TEETH SPIROID GEARS 

 
Abstract. The article deals with the problems of forecasting the roughness of the surface of the spiroid wheel 

teeth from technological the processing conditions. The analysis of the available results of studies to determine the 
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roughness in different modes of forming. Shown that to determine the component of the roughness profile caused by 
geometry and kinematics of the moving working part of the tool it is advisable to use a mathematical mapping to the 
cutting tooth of spiroid wheel cutter with an asymmetrical profile. Installed that as the teeth of the cutter are embedded 
into the part material, the cutting edges form a segment of a certain shape, the analysis of the mutual position of which 
allows to calculate the component h1 roughness. The roughness value formed by a side cutting blade with 30 profile is 
almost 2 times less than the roughness formed by a side cutting blade with a profile of 10. The maximum roughness for 
modules 2–2,5 does not exceed 9 – 12 microns. 

Keyword: spiroid gear, roughness, kinematic scheme cutting. 
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УДК 621.787 
 

А.Н. АФОНИН, А.И. ЛАРИН, А.В. МАКАРОВ  
 

РАСЧЕТ РАЗМЕРОВ ЗАГОТОВКИ ПРИ ГЕТЕРОГЕННОМ 
УПРОЧНЕНИИ РЕЖУЩЕ–ДЕФОРМИРУЮЩЕЙ ОБРАБОТКОЙ ППД 

 
Аннотация. Предложено использовать для повышения эксплуатационных свойств точных и нежестких 

деталей комбинированную режуще–деформирующую обработку поверхностным пластическим 
деформированием, позволяющую формировать гетерогенную структуру поверхностного слоя. Способ 
заключается в обкатывании нарезанного на заготовке волнистого рельефа.  Проведено  моделирование 
гетерогенного упрочнения режуще–деформирующей обработкой ППД методом конечных элементов в 
программе DEFORM 2D. С помощью моделирования установлено, что наиболее рациональным является 
нарезание перед ППД рельефа треугольного профиля с углом 90, обеспечивающего в поверхностном слое 
урочняемой детали наибольшую степень деформации и, следовательно, упрочнения, при отсутствии закатов. 
Исходя из условия равенства объемов металла до и после деформирования получена формула для расчета 
диаметра заготовки под режуще–деформирующую обработку наружных цилиндрических поверхностей ППД.  

Ключевые слова: гетерогенное упрочнение, поверхностное–пластическое деформирование, режуще–
деформирующая обработка, метод конечных элементов. 

 
Введение 
Известно, что значительное повышение эксплуатационных свойств деталей машин 

может быть достигнуто путем формирования на их рабочих поверхностях гетерогенной 
структуры в виде чередующихся участков высокой и низкой твердости [1, 2, 3]. Чередование 
в гетерогенном слое упрочненных твердых участков с менее упрочненными вязкими 
способствует торможению развития микротрещин и повышению усталостной прочности 
материала [1, 2]. При абразивном изнашивании поверхности твердые включения в 
пластичной основе затрудняют контакт абразивных частиц с материалом основы, что 
позволяет многократно увеличить износостойкость по сравнению с равномерно 
упрочненным поверхностным слоем [3]. 

Одним из наиболее эффективных способов поверхностного гетерогенного упрочнения 
с точки зрения повышения усталостной прочности является обработка поверхностным 
пластическим деформированием (ППД) [2, 3]. Для получения гетерогенных структур при 
упрочнении точных и нежестких деталей целесообразно использовать комбинированную 
режуще–деформирующую обработку ППД [4]. При реализации режуще–деформирующей 
обработки ППД на упрочняемой поверхности заготовки вначале нарезается волнистый 
рельеф (рисунок 1) в направлении, близком к направлению оси заготовки. Затем деталь 
подвергается обкатыванию гладким цилиндрическим роликом с целью формирования 
гладкой рабочей поверхности детали. При деформировании металл перемещается роликом 
из выступов нарезанного рельефа во впадины. Рельеф на заготовке  при этом располагается 
относительно номинального размера детали таким образом, чтобы объем его выступов был 
равен объему впадин.  

Основная часть 
Степень и равномерность упрочнения при режуще–деформирующей обработке ППД 

будут зависеть от параметров волнистого рельефа: его формы, шага P, высоты h. Влияние 
формы и размеров инструмента менее значительно. С точки зрения технологии нарезания 
наиболее предпочтительными являются профили треугольной и круглой формы. Для 
сравнения результатов обкатывания рельефа различной формы проведено моделирование 
данного процесса. При моделировании был использован наиболее эффективный для 
исследования больших пластических деформаций метод конечных элементов (МКЭ) [4, 5]. 
Для моделирования ППД с помощью МКЭ использовалась программа DEFORM 2D.  
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детали 20…200 мм принимается равной 0,01…0,10 мм, в зависимости от величины 
номинального диаметра. Количество ступеней выбирается в пределах 4–6 в меньшую и 
большую стороны от рассчитанного по формуле (1) диаметра. За диаметр заготовки 
окончательно принимается диаметр наименьшей ступени, на поверхности которой после 
пробного обкатывания жестким инструментом, настроенным на номинальный диаметр 
детали, не было раковин. 

 

 
 

Рисунок 3 – Распределение эквивалентных деформаций на глубине 0,1 мм под поверхностью детали: 

  – треугольный профиль с углом 90;   – круглый профиль. 
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Допуск на диаметр заготовки назначается равным допуску на номинальный диаметр 
детали. 

Заключение 
Основными размерами заготовки при гетерогенном упрочнении цилиндрических 

поверхностей режуще–деформирующей обработкой ППД являются шаг и высота 
нарезанного рельефа и наружный диаметр заготовки. В результате проведенных 
теоретических исследований установлено, что наиболее предпочтительным для 
гетерогенного упрочнения режуще–деформирующей обработкой ППД представляется 
использование предварительно нарезанного рельефа треугольного профиля с углом 90 и 
шагом до 1,5 мм. Наружный диаметр заготовки может быть предварительно рассчитан 
исходя из равенства объемов до и после деформирования, а затем уточнен путем 
обкатывания пробной ступенчатой заготовки. 

Выполнение приведенных рекомендаций позволит обеспечить существенное (до 
полутора раз) повышение усталостной прочности тяжелонагруженных поверхностей. 
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A.N. AFONIN, A.I. LARIN, A.V. MAKAROV 
 

CALCULATION OF DIMENSIONS OF WORKPIECE  
FOR HETEROGENEOUS HARDENING  

OF CUTTING–FORMING PROCESSING SPD 
 

Abstract. It is suggested to use combined cutting–forming processing with surface plastic deformation to 
increase the operational properties of precise and non–rigid parts, which makes it possible to form a heterogeneous 
structure of the surface layer. The method consists in rolling the undulating relief cut on the workpiece. Modeling of 
heterogeneous hardening by the cutting–forming processing of SPD by the finite element method in the DEFORM 2D 
program has been carried out. With the help of modeling it is established that the most rational is cutting before the 
SPD a relief of a triangular profile with an angle of 90, which provides the greatest degree of deformation in the 
surface layer of the part to be cleaned and, consequently, hardening, in the absence of folds. Proceeding from the 
condition of equality of metal volumes before and after deformation, a formula is obtained for calculating the diameter 
of the workpiece for cutting and deforming treatment of external cylindrical surfaces of SPD. 

Keywords: heterogeneous hardening, surface–plastic deformation, cutting–forming processing, finite element 
method. 
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Рисунок 3  –  График зависимости максимального относительного утонения полученной детали  

от относительной толщины исходной заготовки 
 

Анализ изменения максимального относительного утолщения полученной детали 
показал, что чем больше относительная толщина заготовки, тем меньше максимальное 
относительное утолщение полученной  детали (рисунок 4).  

Что касается максимального относительного утолщения, то оно практически линейно 
уменьшается от значения 0,135 при относительной толщине 0,005 до значения 0,093 при 
относительной толщине 0,028. 

 

 
Рисунок 4 –  График зависимости максимального относительного утолщения полученной детали от 

относительной толщины исходной заготовки 
 

Дополнительно анализируя результаты моделирования совмещенного процесса 
операций раздача, обжим, вытяжка и отбортовка при различных толщинах заготовки, можно 
заметить, что при прочих равных условиях максимальное относительное утонение может 
наблюдаться как на краях заготовки по меньшему диаметру (в зоне отбортовки), по 
большему диаметру (в зоне раздачи), так и в середине (в зоне раздачи ближе к границе с 
зоной обжима).  
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E.O. YAKOVLEVA, S.A. EVSYUKOV, T.A. ARTYUKHOVSKAYA 
 

THE INFLUENCE OF THE INITIAL BLANK THICKNESS ON THE PART 
THICKNESS OBTAINED BY THE COMBINATION OF SUCH 

OPERATIONS AS EXPANSION, CRIMPING, DRAWING AND FLANGING 
 

 
Abstract. The article deals with production of parts by combining such operations as expansion, crimping, 

drawing and flanging. The process was simulated using the Autoform software with different thicknesses of the initial 
blank. The influence of this parameter on the thickness of the obtained part was determined. The graphs of the 
dependence of the maximum relative thinning and the maximum relative thickening of the conical part on the relative 
thickness of the initial blank are presented. The areas with the greatest and the smallest thickness of the received 
product are shown. 

Keywords: combined operation, expansion, crimping, drawing, flanging, simulation, thicknesses of the initial 
blank, relative thinning, the maximum relative thickening. 
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МАШИНОВЕДЕНИЕ И МЕХАТРОНИКА 

УДК 621.81 
 

Е.В. МИЩЕНКО, В.Я. МИЩЕНКО  
 

ОСОБЕННОСТИ ПРЕПОДАВАНИЯ КУРСА «ДЕТАЛИ 
МЕХАТРОННЫХ МОДУЛЕЙ, РОБОТОВ И ИХ КОНСТРУИРОВАНИЕ» 

 
Аннотация. В статье рассматриваются особенности преподавания курса «Детали мехатронных 

модулей, роботов и их конструирование» на базе кафедры «Механика, мехатроника и робототехника» Юго–
Западного государственного университета (г. Курск). Приведены цели и задачи изучения данной дисциплины, а 
также знания, умения и навыки, которыми обучающийся должен овладеть в процессе изучения данного курса.  

Ключевые слова: мехатроника, робототехника, мехатронные модули и системы, бакалавры. 
 
Введение  
В настоящее время обозначились новые тенденции современного производства и 

управления, вызванные переходом к информационному обществу и обусловленные научно–
техническим прогрессом и современными экономическими формами деятельности. Новый 
тип экономики предъявляет новые требования к выпускникам вузов, среди которых 
приоритет получают требования профессиональной компетентности, формирование которой 
сегодня является стратегической целью высшего образования. Поэтому преподавание новых 
дисциплин имеет свои особенности.  

Основная часть 
В середине ХХ века возникло новое научное направление – мехатроника, 

посвященное созданию и целенаправленной эксплуатации машин и систем, движение 
которых определяется электронно–вычислительной техникой. Она базируется на знаниях 
механики, микропроцессорной техники, информатики, электроники и компьютерном 
управлении движения агрегатов и машин [1]. Одним из направлений мехатроники является 
робототехника, ориентированная на создание роботов и робототехнических систем, 
построенных на базе мехатронных модулей (информационно–сенсорных, исполнительных и 
управляющих).  

Особенность обучения по данному направлению в сравнении с 
машиностроительными, технологическими, агропромышленными и другими направлениями 
заключается в том, что эта междисциплинарная подготовка выпускников включает в себя 
элементы подготовки инженера–механика, инженера по автоматическому управлению 
различными объектами и процессами, инженера–электроника, специалиста по 
вычислительной технике и технологии, инженера–приборостроителя. 

Одной из дисциплин, необходимых для подготовки бакалавров, готовых к решению 
задач в области мехатроники и приборостроения, современного машиностроения, умеющих 
разрабатывать новые технологические процессы и автоматизированное оборудование, новые 
методики расчета и экспериментального исследования машин, мехатронных систем и 
оборудования, является курс «Детали мехатронных модулей, роботов и их 
конструирование». Он изучается на 3 курсе по направлению подготовки бакалавров 15.03.06 
– «Мехатроника и робототехника» направленности «Бытовые мехатронные системы» на 
кафедре «Механика, мехатроника и робототехника» ФГБОУ ВО Юго–Западного 
государственного университета (ЮЗГУ, г. Курск). В состав дисциплины входят лекции, 
практические занятия, лабораторные работы, курсовое проектирование и самостоятельное 
изучение материала.  

Курс «Детали мехатронных модулей, роботов и их конструирование» формирует 
общеинженерную подготовку специалиста в области мехатроники и робототехники, его 
знания, умения и навыки, необходимые для последующего изучения дисциплин 
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профессионального цикла, а также в дальнейшей его деятельности в качестве инженера–
конструктора, инженера–эксплуатационника и других видах инженерной деятельности по 
освоению новой техники. Являясь частью раздела «Механика», данный курс содержит в себе 
основные сведения о динамике машин, деталях машин, основах конструирования элементов 
машин и механизмов, используемых в мехатронике и робототехнике. 

Цель преподавания курса – дать обучающемуся знания об основных понятиях курса, 
основах синтеза и анализа различных механизмов, кинематике и динамике механизмов и 
машин, основах расчета и конструирования деталей и узлов, использующихся в мехатронных 
и робототехнических устройствах. 

Задачи изучения курса: 
1. На базе общеинженерных дисциплин, предшествующих рассматриваемому курсу, 

изучить данный предмет, чтобы заложить прочный фундамент для профилирующих 
дисциплин и последующего выполнения выпускной квалификационной работы. 

2. Овладеть основными принципами проектирования и конструирования элементов 
конструкций и механизмов мехатронных и робототехнических систем, в том числе с 
использованием современных технологий и автоматизированных систем (АРМ Win Machine, 
Компас и др.); 

3. Уметь: 
– конструировать механизмы, узлы и детали мехатронных модулей и роботов; 
– производить расчеты передач на прочность; 
– читать чертежи и текстовую документацию с целью оценки характеристики 

оборудования; 
– самостоятельно проектировать узлы мехатронных и робототехнических систем по 

заданным входным данным; 
– оформлять графическую и текстовую конструкторскую документацию в полном 

соответствии с требованиями ГОСТов; 
– разрабатывать технические задания на проекты машин и механизмов; 
В процессе учебы обучающиеся должны научиться владеть: 
– навыками и методами конструирования новых мехатронных и робототехнических 

систем; 
– приемами разработки конструкторской документации в виде чертежей деталей и 

сборочных единиц;  
– приемами правильного и обоснованного выбора материалов для конструкций 

механизмов в соответствии с заданными требованиями; 
– методами расчета мехатронных и робототехнических систем с применением 

современного вычислительного программного обеспечения. 
Во время изучения курса у обучающихся формируются следующие общетехнические 

компетенции: 
– способность производить расчеты и проектирование отдельных устройств и 

подсистем мехатронных и робототехнических систем с использованием стандартных 
исполнительных и управляющих устройств, средств автоматики, измерительной и 
вычислительной техники в соответствии с техническим заданием; 

– способность разрабатывать конструкторскую и проектную документацию 
механических, электрических и электронных узлов мехатронных и робототехнических 
систем в соответствии с имеющимися стандартами и техническими условиями. 

Заключительным этапом освоения дисциплины является выполнение курсового 
проекта, который ставит перед собой две задачи:  

1  закрепление и углубление знаний, полученных при изучении общетехнических 
дисциплин; 

2  приобретение навыков конструирования на примере расчета приводного узла 
какого–либо мехатронного устройства. 

Конструирование современных мехатронных систем осуществляется по модульному 
принципу, то есть существуют механические компоненты (передаточные механизмы, 
звенья), электромеханические компоненты (двигатели, тормоза, муфты), электронные, 
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микропроцессорные, информационные и сенсорные устройства, объединенные в одном 
корпусе [2]. В процессе выполнения курсового проекта обучающиеся должны овладеть 
навыками модульного принципа при конструировании и проектировании. 

Основными преимуществами мехатронных модулей является следующее: 
– исключение многоступенчатого преобразования энергии и информации, упрощение 

кинематических цепей и, следовательно, высокая точность; 
– конструктивная компактность; 
– возможность объединения мехатронных модулей в сложные мехатронные системы; 
– способность выполнять сложное движение благодаря применению методов 

адаптивного и интеллектуального управления.  
Тематика курсовых проектов выбирается исходя из специфики выполняемых НИР на 

кафедре. Так обучающимися выполняются проекты по разработке приводов, используемых 
при проектировании технологического оборудования в машиностроении [3], для пищевой и 
перерабатывающей промышленности [4–6], при разработке роботизированных экзоскелетов 
для верхних и нижних конечностей [7, 8], беспилотных летающих аппаратов [9] и др. 
Качественно выполненные обучающимися курсовые проекты являются хорошей базой для 
выпускной квалификационной работы. 

Заключение  
Дисциплина «Детали мехатронных модулей, роботов и их конструирование» 

существенно отличается от классического курса «Детали машин и основы конструирования» 
[10], поэтому нуждается в специализированном методическом обеспечении. Создание 
современных учебников и учебно–методических пособий для данного курса является в 
настоящее время весьма актуальной задачей.  
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PECULIARITIES OF TEACHING THE COURSE  

DETAILS OF MECHATRONIC MODULES, ROBOTS AND THEIR DESIGN 
 
Abstract. The peculiarities of teaching the course «Details of mechatronic modules, robots and their design» 

at the Department «Mechanics, Mechatronics and Robotics» of the South–West State University (Kursk) are considered 
in the article. The goals and tasks of studying this discipline, and the knowledge, skills and abilities that students must 
master in the learning process of this course are given. 

Keywords: mechatronics, robotics, mechatronic modules and systems, bachelors. 
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действует знакопеременная сила, направленная вдоль продольной оси гидромолота, 
обусловленная возвратно–поступательным движением бойка. В свою очередь динамическое 
воздействие ударной машины проявляется в создании более высокой, чем при 
использовании сменного оборудования других видов, вибрационной нагрузки на оператора. 

Особенно это важно из–за вступления в силу Директивы Евросоюза по физическим 
воздействиям (вибрации) № 2002/44/ЕС, которая направлена на ужесточение требований по 
охране труда операторов машин, оснащенных ударными машинами. 

Особенностью применения мехатронных ударных машин в составе рабочего органа 
гидравлического экскаватора, является их жесткое крепление к базовой машине 
представленное на рисунке 2. В этом случае, вся энергия отдачи передается через жесткие 
соединения, стреле экскаватора, вызывая динамические и вибрационные нагрузки. 

 

  
а б 

Рисунок 2 – Монтаж гидромолота на стрелу экскаватора: а) – сверху; б) – сбоку 
 
В работе [4] приводятся результаты исследований системы "гидромолот–экскаватор". 

Исследовалось влияние гидромолота СП–70 (энергия удара 3 кДж, частота ударов 180 
уд/мин, масса ударной части 150 кг, масса молота 750 кг) на гидравлический экскаватор ЭО–
3322Б. Ударная мощность гидромолота составляла 9 кВт. По результатам проведения 
экспериментальных исследований было выявлено, что наибольшие напряжения 
фиксировались на конце стрелы экскаватора и составляли 23 МПа. В начале рукояти эти 
напряжения составляли 12,5 МПа, что почти в два раза меньше. Наибольшее напряжение 
было зафиксировано у основания стрелы и составило 54 МПа. 

При исследовании работы мехатронной ударной машины ПН–2400 (энергия удара 2,4 
кДж, частота ударов 325 уд/мин, масса ударной части 70 кг, масса молота 560 кг) совместно 
с гидравлическим экскаватором ЭО–3322А, было выявлено, что напряжения в 
металлоконструкциях рабочего оборудования составляли 66 МПа в рукояти и 70 МПа в 
стреле. Ударная мощность пневмомолота при этом составляла 13 кВт [5]. 

В обоих случаях возникающие напряжения являются критическими, так как в 2 – 2,5 
раза превышают допускаемые. Так авторы работ [4,5] отмечают то, что: 

– максимальные уровни напряжений и вибрации возникали в момент удара; 
– в сечениях металлоконструкций рабочего оборудования экскаватора присутствовали 

только высокочастотные составляющие спектра; 
– в элементах платформы – составляющие в диапазоне от 2 Гц до 5 кГц. 
Так же отмечалось, что распространение вибраций происходит во всех плоскостях, с 

преобладанием вертикальных составляющих. После завершения  основного колебания 
платформы, наблюдается её повторное колебание поперёк продольной оси. 
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4. Для снижения динамических воздействий ударного механизма необходимо 
применять демпфирующие механизмы. 

5. Необходимо выполнить анализ демпфирующих механизмов применяемых в 
дорожной и строительной технике для выбора рационального устройства и структурной 
схемы его взаимодействия с базовой машиной. 

Представленный материал выполнен в рамках проекта №9.2952.2017/4.6. 
государственного задания. 
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A.V. GORIN, N.V. TOKMAKOV, A.V. PROSEKOVA, M.A. GORINA, V.A. KRAVCHENKO 
 

MECHATRONIC MECHANISMS BASED ON PULSED HYDRAULIC 
DRIVE AND INFLUENCE ON THE BASIC MACHINE 

 
Abstract. The article presents mechatronic mechanisms based on a pulsed hydraulic drive (shock machines) of 

a number of manufacturers installed on a base machine. Mechatronic impact mechanisms are an active type of 
equipment that has a dynamic effect on the base machine. The base machine, in turn, is an oscillatory system that 
creates negative vibrational effects on the operator. This effect is due to the fact that during the operation of the pulsed 
mechatronic mechanism, a sign–alternating force acts on the machine along the longitudinal axis of the shock 
mechatronic mechanism, due to the reciprocating motion of the striker. 

The process of "falling" the base machine in the process of work is described. This process is due to the fact 
that in order to balance the reactive force that occurs when the striker moves, the mechatronic pulse mechanism must 
be pressed against the object of work by means of hydraulic cylinders for driving the working equipment of the basic 
machine. A number of applied structural schemes of interaction of the pulsed mechatronic mechanism with the base 
machine are presented. 

Keywords: mechatronic mechanisms, pulsed hydraulic drive, power action, damping mechanism, percussion 
machines. 
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УДК 621.822 
 

М.А. КОЖУХОВ, А.В. СЫТИН, А.Ю. РОДИЧЕВ 
 

СПОСОБЫ ОБЕСПЕЧЕНИЯ МИНИМАЛЬНОГО ИЗНОСА РАБОЧЕЙ 
ПОВЕРХНОСТИ ЛЕПЕСТКОВЫХ ПОДШИПНИКОВ  

В ПЕРИОД ПУСКА И ОСТАНОВА 
 

Аннотация: в статье рассматриваются основные причины, сопутствующие износу упругих 
элементов лепестковых подшипников, что напрямую связано с уменьшением ресурса функционирования 
роторно–опорной системы. Изложены наиболее актуальные способы по минимизации негативных факторов, 
оказывающих влияние на износ лепестков газодинамической опоры. Приведена классификация изложенных 
способов с подробным описанием оказываемого влияния на обеспечение минимального износа. Сделаны выводы 
о положительных эффектах и негативных составляющих каждого отдельного способа.   

Ключевые слова: лепестковый газовый подшипник (ЛГП); износ лепестковых элементов; ресурс 
роторно–опорной системы; комбинированные опоры; наддув; специальные покрытия рабочей поверхности 
лепестка. 

 
Введение 
Современные тенденции реформации человеческих потребностей предопределяют 

необходимость стремительного развития отраслей машиностроения и других областей 
промышленности, констатируют факт повышения требований к функциональным 
возможностям и рабочим характеристикам механических систем. В конструкции 
высокоскоростных роторных турбомашин наиболее нагруженным и ответственным 
элементом, определяющим работоспособность и ресурс машины в целом, является роторно–
опорный узел. Сравнительно недавно, при конструировании опор высокоскоростных 
роторов, предпочтение отдавалось подшипникам качения, что объяснялось удобством их 
монтажа, смазки и обслуживания, а также отсутствием износа опорных поверхностей ротора 
и постоянством коэффициента трения при изменении скоростей и нагрузок [1]. Однако 
неизбежное увеличение частот вращения ротора выявило существенные недостатки, наличие 
которых не позволяло даже теоретически рассматривать подшипник качения как базисный 
роторно–опорный узел высокоскоростных агрегатов. Перспективным, с позиции 
быстроходности и надежности, является использование лепестковых газовых подшипников 
скольжения (ЛГП), на рабочие поверхности которых наносятся покрытия с применением 
твердых смазочных материалов. Все же, несмотря на очевидные качественные улучшения 
рабочих характеристик технических машин, являющиеся производными от внедрения в 
конструкцию лепестковых подшипников скольжения, есть определенные негативные 
моменты. Прежде всего, к недостаткам ЛГП можно отнести наличие сухого трения между 
цапфой вала и лепестковыми элементами в периоды пуска и останова ротора, что является 
главной причиной износа лепестков. Для уменьшения этого недостатка и увеличения ресурса 
ЛГП стремятся к снижению скорости всплытия, уменьшению времени разгона и останова, 
снижению коэффициента трения контактирующих поверхностей за счет применения 
специальных покрытий на лепестковых элементах и опорных поверхностях вала [2]. Помимо 
нанесения антифрикционных покрытий на контактирующие рабочие поверхности роторно–
опорного узла, разрабатывают конструкции лепестковых подшипников, где есть интеграция 
элементов обеспечивающих наддув, заключающийся в создании в пространстве 
подлепестковой области зоны избыточного давления, для оказания дополнительного 
воздействия на ротор и придании ему устойчивого положения. Также к эффективным 
способам минимизации фрикционного влияния следует отнести научные исследования, 
направленные на проектирование и внедрение в реальные объекты комбинированных опор 
(КО). Это опора, в которой конструктивно объединены несколько типов подшипников, 
различающихся по способу создания несущей способности. Такое объединение позволяет 
добиться синергетического эффекта: исключить (или максимально снизить) недостатки, 
присущие каждому типу подшипников, и одновременно сохранить их достоинства [3].  
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Для нанесения металлопокрытий на тонкостенные упругие элементы возможно 
применение следующих технологий.  

Метод гальванического нанесения антифрикционных покрытий из растворов 
позволяет проводить процесс при низких температурах и одновременно обрабатывать 
большое количество деталей. Кроме того, за счёт использования специальных 
приспособлений для крепления деталей, анодов сложной формы и экранов существует 
возможность размерного нанесения покрытий, что устраняет необходимость последующей 
механической обработки.  

Одним из путей повышения качества металлопокрытий, а соответственно и 
повышения ресурса изделий, является внедрение в производство технологий нанесения 
металлопокрытий с использованием методов газотермического напыления металлических 
порошков (электродугового, детонационного, плазменного, газопламенного и др.), а также 
способами плазменной, газопламенной наплавки или напекания.  

При плазменном напылении металлических покрытий для расплавления и переноса 
порошка на поверхность детали используются тепловые и динамические свойства 
плазменной струи, которую получают нагревом плазмообразующего газа в электрической 
дуге, горящей между катодом и анодом плазменной горелки (плазматрона) и очистке столба 
дуги потоком этого газа, для повышения плотности энергоносителя. В качестве 
плазмообразующих газов используется аргон, азот, гелий или смесь этих газов. 
Предварительная обработка поверхности перед напылением включает: механическую и (или) 
струйно–абразивную обработку. 

Метод детонационного напыления начал развиваться в конце 60–х годов. Большой 
объем исследований по разработке и совершенствованию метода, выполненных в нашей 
стране, позволил решить основные задачи в области техники и технологии этого метода. 
Суть его заключается в следующем: в рабочую камеру детонационной установки подаются 
горючая смесь и напыляемый порошок. С помощью электрической искры смесь 
поджигается, из рабочей камеры по стволу пламя распространяется с возрастающей 
скоростью до возникновения детонационной волны. Скорость распространения детонации 
1000÷3000 м/с, зависит от характеристик горючей смеси. При истечении продуктов 
детонации последние увлекают за собой частицы порошка, которые, кроме тепловой, 
получают и кинетическую энергию. Скорость выноса порошка 690÷1000 м/с. Установленная 
на пути потока газов и порошка изношенная поверхность (подложка) покрывается частицами 
напыляемого материала. Детонационное напыление (покрытие) характеризуется высокой 
износостойкостью. 

Способ электродугового напыления отличается высокой производительностью 
нанесения покрытий (до 21 кг/ч), получением покрытий толщиной в несколько миллиметров, 
высокой износостойкостью восстанавливаемых поверхностей (до 1,5÷2 раза выше 
износостойкости детали), простотой и технологичностью процесса, возможностью нанесения 
покрытия на поверхности деталей, изготавливаемых из различных материалов. Кроме того, 
покрытия, нанесенные способом электродугового напыления, обладают хорошей 
маслоемкостью, удерживая масло в поверхностных микропорах. 

Газопламенное напыление включает в себя процессы нанесения покрытий, в основе 
которых лежит нагрев исходного материала до жидкого или пластического состояния и его 
распыление газовой струей. Его особенностями являются: высокая производительность (до 
40 кг/ч); возможность получения слоев в достаточно диапазоне толщины (0,1÷3 мм) с 
широким спектром свойств (в том числе регулируемых по толщине); простота нанесения 
покрытия на детали различных геометрических форм и размеров; универсальность 
используемых материалов как по форме (порошки, проволоки), так и по физико–
механическим характеристикам (металлы, сплавы, окислы, карбиды, пластмассы и т.д.). К 
достоинствам газопламенного напыления, особенно ценным для сельскохозяйственного 
машиностроения, относится возможность осуществления процесса в различных 
производственных условиях (от крупносерийного производства до единичного 
восстановления в ремонтных мастерских и даже непосредственно в поле). При этом 
достаточно легко механизировать процесс, в результате чего достигается повышение 
качества покрытия [6]. 
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вращения нагрузка на лепестки 5 становится максимальной, поэтому через подводящие 
каналы 4 в питающие прямоугольные камеры 3 подается смазочный материал под 
давлением. Это позволяет избежать необратимых деформаций лепестков 5 и, как следствие, 
выхода опоры и всей турбомашины из строя. При вращении вала 6 лепестки и весь 
лепестковый гидростатический подшипник нагреваются, что приводит к изменению 
геометрических размеров и прочностных свойств материалов. Дополнительными функциями 
подачи смазочного материала под лепестки 5 являются принудительное охлаждение и 
дополнительное демпфирование колебаний, возникающих в процессе работы. 
Демпфирование в лепестковом гидростатическом подшипнике происходит за счет 
деформаций упругих элементов, трения между ними, а также за счет демпфирования 
гидродинамического слоя под лепестками [11]. Достоинства конструкции представленной на 
рисунке 4, б и способа в целом заключаются в том, что принудительное повышение давления 
смазочного материала значительно увеличивает жесткость подшипника, демпфирование 
колебаний и устойчивость движения, способствует снижению влияния температурных 
деформаций, что положительно влияет на ресурс работы подшипника, и самое главное 
предотвращает фрикционные процессы. Применение системы наддува позволяет повысить 
срок службы и снизить вероятность аварийной ситуации.  

Выводы. 
На основе выполненного анализа и описания применяемых способов минимизации 

износа соприкасающихся рабочих поверхностей роторно–опорной системы представляется 
возможным назначать рекомендации и давать заключения по выбору отдельного способа или 
их синергетическом объединении применительно к каждой индивидуальной 
высокоскоростной турбомашине, а также позволяет  выявить наиболее приемлемое 
перспективное развитие выбранного способа совершенствования лепестковых газовых опор.  
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M.A. KOZHUKHOV, A.V. SYTIN, A.Yu. RODICHEV 

 
MEANS OF PROVISION OF MINIMAL WEAR OF GAS FOIL BEARINGS 

SURFACE DURING TRANSITION REGIME 
 

Abstract. the present paper considers main reasons of wear of foil elements of a foil gas bearing, which is 
directly connected with decrease of lifetime expectancy of a rotor–bearing system. The most perspective means of 
minimization of negative factors  impact that influences the wear rate of elastic elements of a gasdynamic bearing. 
Classification of the considered means has been presented along with a detailed description of an impact sufficient to 
minimize the wear rate. The conclusion has been made regarding positive and negative effects of every means 
presented.  

Keywords: foil gas bearing; wear of foil elements; lifetime expectancy of rotor–bearing system; combined 
bearing; pressurization; special coating of foil elements. 
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УДК 621.822 
 

А.Ю. КОРНЕЕВ, ЛИ ШЕНБО 
 

МЕТОДИКА РАСЧЕТА ДИНАМИКИ ЖЕСТКОГО РОТОРА  
НА КОНИЧЕСКИХ ПОДШИПНИКАХ ЖИДКОСТНОГО ТРЕНИЯ  

С МЕТАЛЛОРЕЗИНОВЫМИ ДЕМПФЕРАМИ 
 

Аннотация. Предложена методика расчета динамики жесткого ротора на конических подшипниках 
жидкостного трения c металлорезиновыми (МР) демпферами. Система уравнений движения записана для 
двухмассового двухопорного ротора на конических подшипниках скольжения с МР–демпферами. Результаты 
иллюстрируются характерными траекториями, полученными для конических подшипников, смазываемых 
водой. 

Ключевые слова: динамика, конический подшипник, демпфер, металлорезина,  уравнения движения, 
метод траекторий. 

 
Введение. 
В предыдущей работе [1] была рассмотрена динамика роторов на конических опорах 

скольжения, жестко закрепленных в корпусе агрегата. Однако, в силу специфических 
свойств гидродинамических сил, действующих в смазочном слое, такое крепление 
подшипников скольжения может способствовать при вращении ротора возникновению 
опасных автоколебаний, развивающихся в широком диапазоне скоростей вращения [2]. В 
этой связи, в системе «ротор–подшипник» при определенных условиях могут возникнуть 
повышенные вибрации, что неблагоприятно сказывалось на работе всей машины. Одним из 
путей снижения нежелательных вибраций может стать конструкция конического 
подшипника жидкостного трения совместно с упруго–демпферной опорой. В качестве 
материала такой опоры предлагается использовать материал МР (металлорезина или 
металлический аналог резины), разработанный в Самарском государственном 
аэрокосмическом университете в 60–е годы прошлого столетия [3]. Материал МР обладают 
упругими свойствами, подобными свойствам как резины, так и пластмассы, но имеет в 10 раз 
большую прочность, не подвержен старению, в 2…3 раза лучше поглощают ударные и 
вибрационные нагрузки, может работать в агрессивных средах, не подвержен воздействию 
масел, грязи, пыли, выдерживает температуру от –50 до +400 ºС, не боится радиации и не 
воспламеняются. Как показали исследования, в диапазоне частот 10 – 4000 Гц наилучшими 
вибропоглощающими свойствами обладает металлорезина с пористостью 0,75. Амплитуда 
колебаний при этом снижается в 6 – 10 раз. Варьировать свойства виброгасителей можно 
также подбором материала спирали, толщины проволоки, нанесением покрытий [3].  

Основная часть. 

 
 

Рисунок 1 –  Расчетная схема системы «ротор  конический подшипник с МР–демпфером» 
 

Предлагаемая конструкция представляет собой втулку из МР–материала, 
охватывающую конический подшипник, что тем самым снижает уровень передаваемых на 
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корпус машины вибраций. Пусть исходная система представляет собой жесткий ротор массы 
m, опирающийся на два упругих конических подшипника жидкостного трения с 
металлорезиновым демпфером (рисунок 1). Для подавления автоколебаний в зоне 
повышенных скоростей вращения ротора исследуемый конический подшипник 
располагается в металлорезиновом демпфере, имеющем жесткость и демпфирование в 
радиальном направлении K0 и B0, в осевом направлении K0Z и B0Z соответственно. 

Для вывода уравнений движения введем неподвижную систему координат OXYZ. 
Пусть в этой системе X1, Y1, Z1  координаты центра упруго–демпферной опоры О1; X2, Y2, Z2 
 координаты центра шипа ротора О2; X3, Y3, Z3  координаты центра масс (тяжести) ротора 
О3;   полярный угол линии центров (см.  1). Тогда, принимая во внимание, что X3 = X2 + 
+Δsint, Y3 = Y2 + Δcost, получим уравнения движения системы 
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     (1) 

где  m0 и m  масса опоры и ротора соответственно, при этом K0X = K0Y = K0, B0X = B0Y = B0, 
поскольку МР–кольца обладают равножесткостными свойствами вдоль осей X и Y. 

Первые три уравнения системы (1) являются уравнениями движения опоры под 
действием упругих сил 10 XK X , 10 YK Y , 10 ZK Z , сил демпфирования 10 XB X

 , 10 YB Y
 , 10 ZB Z

  

и реакций смазочного слоя RX, RY, RZ, направленных к опоре. Вторые три уравнения 
определяют уравнения движения ротора под действием реакций смазочного слоя RX, RY, RZ. 

В целях упрощения записанной системы уравнений движения ротора (1) введем 
следующие предпосылки: будем полагать равным нулю дисбаланс ротора (Δ = 0) и 
отсутствие относительных перемещений в осевом направлении (Z1 = Z2 = 0). Первое 
предположение обосновано тем, что пренебрежение дисбалансом ротора Δ, как это 
подтверждено многочисленными экспериментальными исследованиями, практически не 
влияет ни на границу возникновения автоколебаний, ни на их интенсивность 2. Отсутствие 
перемещений Zi в осевом направлении связано с предположением, что система находится в 
условиях устойчивого (стационарного) положения. С учетом сделанных предположений 
система (1) преобразуется к виду: 
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После обезразмеривания параметров и переменных, входящих в систему (2), согласно 
нижеприведенным выражениям: 
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система уравнений движения для жесткого ротора в упруго–демпферных опорах примет вид: 
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THE CALCULATION PROCEDURE OF THE DYNAMICS  

OF RIGID ROTOR ON THE CONICAL LIQUID FRICTION BEARINGS 
WITH METAL–RUBBER DAMPERS 

 
Abstract. The calculation procedure of the dynamics of rigid rotor on the conical liquid friction bearings with 

metal–rubber (MR) dampers is offered. The equations set of motion is written for two mass two–bearing rotor on the 
conical bearings with MR–dampers.  The results are illustrated by the plots of trajectories for the conical bearings with 
water lubricant. 
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ПРИБОРЫ, БИОТЕХНИЧЕСКИЕ СИСТЕМЫ 
И ТЕХНОЛОГИИ 

УДК 531.385 
 

Д.М. МАЛЮТИН 
 

ГИРОСТАБИЛИЗАТОР ГРАВИМЕТРА  
С КОМБИНИРОВАННЫМ УПРАВЛЕНИЕМ 

 
Аннотация. Рассмотрена  схема индикаторного гиростабилизатора  гравиметра с комбинированным 

управлением. Приведено математическое описание системы. Исследованы различные структурные решения  
построения цепей компенсации возмущающих воздействий. Получены соотношения для выбора параметров 
цепей компенсации возмущений, обеспечивающих их эффективное функционирование. 

Ключевые слова: морской гравиметр, гиростабилизатор, комбинированное управление. 
 
Введение 
В настоящее время  продолжаются активные исследования в области гравиметрии.  

Если в глобальном плане гравитационное поле Земли известно по результатам спутниковых 
съемок, то крупномасштабные карты отдельных участков практически отсутствуют, хотя в 
них имеется большая потребность [1–5].  

Задача повышения точности гравиметрических измерений является актуальной  и 
сегодня [2,6,7]. Уровень точности применяемой аппаратуры   для целей разведки 
месторождений углеводородного сырья должен обеспечивать уверенное обнаружение 
аномалий с амплитудой 0,1–0,2 мГал. Перспективной является задача увеличения точности 
гравиметрических измерений до уровня 0,01–0,05 мГал. Обеспечение перспективной 
точности возможно при проведении работ, связанных с совершенствованием 
гиростабилизаторов (ГС), гравиметрического датчика, увеличением точности обработки 
гравиметрической информации, методики проведения гравиметрической съемки, 
увеличением точности навигационной информации о параметрах движения объекта– 
носителя.  

Совершенствование ГС возможно не только при использовании новых 
чувствительных и исполнительных элементов повышенной точности [8], но и за счет 
использования метода  комбинированного управления [9], включая компенсацию 
возмущающих воздействий (особенно при работе на малотоннажных судах или 
малоразмерных летательных аппаратах в условиях повышенного уровня возмущений), 
исследования различных структурных решений при построении цепей компенсации 
возмущающих воздействий, получения  соотношений для выбора параметров цепей 
компенсации возмущений, обеспечивающих их эффективное функционирование. 

ГС с комбинированным управлением  представляет собой объединение в одну 
систему замкнутой системы управления по отклонению и разомкнутой системы управления 
по возмущающему воздействию. Принцип компенсации возмущений позволяет существенно 
повысить точность стабилизации за счет использования информации о внешней ситуации. 

Функциональная схема 
В работе [10] предложена схема компенсации  возмущений, действующих на систему 

стабилизации и наведения линии визирования в процессе трехкомпонентной качки 
подвижного объекта. Рассмотрим функциональную схему контуров стабилизации ГС с 
комбинированным управлением, работающего в режиме гировертикали  (рисунок 1).    Для 
формирования компенсирующих сигналов используется информация с дополнительных 
датчиков угловой скорости (ДУС) и углового ускорения (ДУУ), установленных на основании 
и наружной рамке ГС. Актуальной является задача выбора структуры и параметров схемы 
компенсации возмущений, при которых обеспечивается лучшее качество компенсации 
внешних возмущений, а следовательно, увеличение точности стабилизации.  
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
   

(1)

Передаточные функции цепей компенсации возмущающих моментов 
Запишем передаточные функции цепей компенсации возмущающих моментов ( iM  – 

возмущающий момент после компенсации)   в случае использования для измерения 
абсолютных угловых скоростей основания и наружной рамки ГС ДУС и ДУУ.     
Передаточная функция цепи компенсации составляющей момента сил вязкого трения 1 yb   

имеет вид: 

( ) ( )11
1 32 2 2 2

1 1

( )
( ) 1 ( ).

( ) 1 2 1 2 1

dys y dyy yds
kz

y ds dys dys dys dyy dyy dyy

K K pKM p
W p W p

b p T p T p T p T p T p

 
    

         
 (2) 

Передаточная функция цепи компенсации составляющей момента  сил вязкого трения 

1 1z xb tg   имеет вид: 
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( 1) ( 1)12
2 42 2 2 2

1 1 1

( )
( ) 1 ( ).

( ) 1 2 1 2 1

dys x dyy xds
kz

z x ds dys dys dys dyy dyy dyy

K K pKM p
W p W p

b tg p T p T p T p T p T p

 
    

          
(3) 

Передаточная функция цепи компенсации составляющей момента  сил вязкого трения 

2 1zb   имеет вид: 

( 1) ( 1)3 2
3 62 2 2 2

2 1 2

( )
( ) 1 ( ).

( ) 1 2 1 2 1

dys z dyy zds
kz

z ds dys dys dys dyy dyy dyy

K K pM p K
W p W p

b p T p T p T p T p T p

 
     

         
 (4) 

Передаточная функция цепи компенсации инерционного возмущающего момента 
1 2 1( )y x z xJ J tg    имеет вид: 

     ( 1)14
4 52 2

1 2 1 1

( ) 1 ( ).
( ) ( ) 1 2 1

dyy xds
kz

y x z x ds dyy dyy dyy

KKM
W p W p

J J tg p T p T p T p

 
   

        
                (5) 

Запишем передаточные функции цепей компенсации возмущающих моментов  в 
случае использования для измерения абсолютных угловых скоростей основания и наружной 
рамки ГС только ДУС. 

( )5 1
5 32 2

1 1

( )
( ) 1 ( )

( ) 1 2 1

dys yds
kz

y ds dys dys dys

KM p K
W p W p

b p T p T p T p

 
   

      
            (6) 

Передаточная функция цепи компенсации составляющей момента  сил вязкого трения 

1 1z xb tg   имеет вид: 

( 1)6 1
6 42 2

1 1 1

( )
( ) 1 ( ).

( ) 1 2 1

dys xds
kz

z x ds dys dys dys

KM p K
W p W p

b tg p T p T p T p

 
   

       
              (7) 

Передаточная функция цепи компенсации составляющей момента  сил вязкого трения 

2 1zb   имеет вид: 

( 1)7 2
7 62 2

2 1 2

( )
( ) 1 ( ).

( ) 1 2 1

dys zds
kz

z ds dys dys dys

KM p K
W p W p

b p T p T p T p

 
   

      
              (8) 

Структурные решения и соотношения для выбора параметров цепей 
компенсации внешних возмущений 

1. Для измерения угловых скоростей основания и наружной рамки ГС используется 
ДУС. Передаточная функция корректирующего звена цепи компенсации ( ) 1kzW p  . 
Передаточная функция  цепи компенсации в обобщенном виде для случаев (6,7,8) запишется 
в виде: 

2 2

( )
( ) 1 .

1 ( )2 1

dysds

ds dys dys dys

KK A p
W p

T p B pT p T p
   

   

  2 3 2 2( ) 2 ( 2 ) 1 .ds dys dys ds dys dys ds dys dys ds dysA p T T p T T T p T T p K K          

 2 3 2 2( ) 2 ( 2 ) 1.ds dys dys ds dys dys ds dys dysB p T T p T T T p T T p         

Очевидно, что минимуму модуля частотной передаточной функции ( )W j
соответствует соотношение: 

1ds dysK K  . 

Для оценки влияния параметров ДУС на эффективность цепи компенсации построим 
график зависимости модуля частотной передаточной функции цепи компенсации от 
постоянной времени ДУС (например, на частоте 10  c–1) (рисунок 2). Как видно из 
графика увеличение эффективности компенсации ограничено только постоянной времени 
ДУС. На рисунке 3 приведена ЛАЧХ цепи компенсации со следующими параметрами: 
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5. Для измерения угловых скоростей основания и наружной рамки ГС используется 
ДУС и ДУУ. Передаточная функция корректирующего звена цепи компенсации 

1

2

1
( )

1kz
T p

W p
T p


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
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Передаточная функция цепи компенсации для случаев (2, 3, 4)  запишется в 
обобщенном виде: 

1 4
2 2 2 2

2 4

( 1) ( )
( ) 1 .

( 1)( 1) ( )2 1 2 1

dys dyyds

ds dys dys dys dyy dyy dyy
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Уменьшить значение модуля частотной передаточной функции можно  выполнив  
условия: 

1ds dysK K  , 2 12 .ds dyy ds dysK K T T T T          (13) 

  Положим 1 dsT T . Дальнейшее уменьшение модуля возможно при одновременном 
выполнении условий: 

2 2 2 2
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                                  

(14) 

 Первое уравнение системы (14) – это коэффициент при 2p  полинома 4 ( )A p , а второе 

– общие члены выражений при 3p  и 4p  полинома 4 ( )A p . Решение  системы (14) позволяет 
найти такие параметры датчиков и корректирующего фильтра, при  которых будет обеспечен 
минимум  модуля частотной передаточной функции цепи компенсации:  
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При замене структуры измерителя эквивалентной цепью появляется возможность 
определения передаточной функции цепи компенсации центробежного возмущающего 
момента: 

2 2
1 1 1 1

( )
( ) 1 ( ),

( ) ( ) 1 2 1

dysds
kz

y z x ds dys dys dys

KKM p
W p W p

J J J p T p T p T p


    

      
 (16) 

1 1 1( ) ( ) ( ).x zp p p     

Вид передаточной функции (16) тождественен передаточной функции цепи 
компенсации момента сил вязкого трения, поэтому при выборе параметров цепи 
компенсации центробежного возмущающего момента также справедливы соотношения, 
приведенные в таблице 1. 

Заключение 
На основе метода комбинированного управления рассмотрена схема компенсации 

возмущений по каналам наружной и внутренней рамок ГС гравиметра. Схема компенсации 
позволяет повысить точность работы ГС. Рассмотрены различные структурные решения 
построения цепей компенсации возмущений. Полученные в работе соотношения позволяют 
рассчитать параметры цепей компенсации, при которых обеспечивается лучшее качество  
работы схемы. Применение фазоопережающих корректирующих фильтров позволяет 
компенсировать собственную инерционность  датчиков цепей компенсации и инерционность 
исполнительного двигателя и приводит к увеличению степени компенсации возмущений. 
Выбор структурного решения построения цепи компенсации определяется потребной 
точностью. 

Работа  выполнена при финансовой поддержке РФФИ. Грант №17–08–00434 А. 
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GYROSTABILIZER OF GRAVIMETER WITH COMBINED CONTROL 
 
Abstract. The scheme of indicator gyrostabilizer of gravimeter with combined control is considered. 

Mathematical description of the system is given. Various structural solutions for the construction of compensation 
circuits for disturbing effects are investigated. Relations are obtained for the choice of the parameters of the 
disturbance compensation circuits that ensure their effective functioning. 

Keywords: sea gravimeter, gyrostabilizer, combined control. 
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Разработан алгоритм управления пространственным движением мобильной ГПИ к 
источнику СО с учетом изменения концентрации, и выбора вида заданной траектории 
движения. 

Предложен алгоритм управления мобильным ГПИ при раннем обнаружении источников 
возгорания на основе зондирования пространства и определения концентрации СО. 
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O.V. YEMELYANOVA, R.Yu. POLYAKOV, S.V. YEFIMOV, S.F. YATSUN 

 
MOBILE FLYING COMPLEX FOR EARLY DETECTION  

OF FOCUSES OF FIRE FIGHTERS 
 

Abstract. The article is devoted to the improvement of methods and means of monitoring  of the environment 
based on the using of gas analyzers, which control the concentration of CO. 

The combination of gas analyzer and mobile unmanned flying complex (UFK) allows to create new means for 
early detection of focuses of fire fighters. The use of such devices opens up new possibilities for promptly determining 
the source of ignition, reacting and eliminating emerging contingencies in the early stages. As a transport platform, 
UFK can be particularly effective, if they allow to  take–off vertically, hover over the object, fly horizontally. Particular 
attention is paid to the search for a source of ignition and planning the trajectory of movement to it, taking into account 
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the environment and obstacles. As the main criterion the concentration of CO in the air, recorded by the UFK was used. 
The increase in concentration is the determining feature for the movement of the mobile platform towards the ignition 
source. 

Keywords: gas analyzer, tricopter, sounding of space. 
 

BIBLIOGRAPHY 
 

1. Polyakov R.YU. Efimov S.V.YAcun S.F. Provedenie issledovaniya upravlyaemogo sinhronnogo dvizheniya 
letayushchego mnogozvennogo robota Vestnik Voronezhskogo instituta MVD Rossii №1 2015 S. 37–44. 

2. Polyakov R.YU. Izuchenie dvizheniya vzleta letayushchego robota s mashushchim krylom / R.U. Polyakov, 
S.V. Efimov, R.I. Praslov // Vestnik Voronezhskogo instituta MVD Rossii.– 2014.– №3. – S90–97.  

3. Polyakov R.YU. Razrabotka letatel nyh robototekhnicheskih sredstv dlya monitoringa okruzhayushchej 
sredy na osnove bionicheskih idej // Problemy prognozirovaniya chrezvychajnyh situacij: materialy XIII nauchno–
prakticheskoj konferencii. M.: FKU Centr «Antistihiya» MCHS Rossii. 2014.– S.101–102. 

4. Emelyanova O. V. et al. The Synthesis of Electric Drives Characteristics of the UAV of “Convertiplane–
Tricopter” Type //MATEC Web of Conferences. – EDP Sciences, 2017. – T. 99. – S. 02002. 

5. Polyakov R.U. Issledovanie dvizheniya letayushchego robota s mashushchim krylom pri vzlete / R.U. 
Polyakov, S.V. Efimov, N.V. Mozgovoj // Elektrotekhnicheskie kompleksy i sistemy upravleniya. Voronezh: Izdatel 
skij dom «Kvarta».– 2014.– № 3. – S41–45.  

6. Polyakov R. U., Efimov S. V., Yatsun S. F. Robot–insekopter dlya provedeniya razvedki na obektah 
himicheskoj i atomnoj promyshlennosti //Pozharnaya bezopasnost: problemy i perspektivy. – 2015. – T. 1. – №. 1 (6). 

7. Emelyanova O. V., Kazaryan G. K., Yatsun S. F. Sintez parametrov ehlektroprivodov BPLA tipa 
«konvertoplan–trikopter» //Cloud of science. – 2017. – T. 4. – №. 2. 

8. Modelirovanie poleta konvertoplana v razlichnyh rezhimah dvizheniya. / S.F Yatsun, O.V Emelyanova, A.I 
Savin, S.P. Stukaneva // Izvestiya YUZGU, 2015. №1(14) – S. 55 – 66.  

9. Yatsun S.F. Algoritm upravleniya bespilotnym letatel nym apparatom tipa konvertoplan / S.F Yatsun, O.V 
Emelyanova, K.G. Kazaryan //Bespilotnye transportnye sredstva s ehlementami iskusstvennogo intellekta (BTS–II–
2016): trudy tret ego Vserossijskogo nauchno–prakticheskogo seminara. – Innopolis: Izd–vo «Pero», 2016. S. 147–157.  

10. Yatsun S. F. i dr. Issledovanie rezhima zavisaniya letayushchego pyatizvennogo robota //Fundamental nye 
issledovaniya. – 2016. – №. 12–2. – S. 354–359. 
 
Emelyanova Oksana Viktorovna  
Southwest State University 
PhD  
305040 Kursk, street 50 years of October, 94 
tel. +7 (4712) 22–26–26 
e–mail teormeh@inbox.ru 
 

Polyakov Roman Yurievich  
Voronezh State Technical University  
Postgraduate student  
394026, Voronezh, Moscovskiy prospect, 14. 
tel. +7(473) 2437–670 
e–mail: polyakov_gps@mail.ru 
 

Efimov Sergey Venegditovich.  
Voronezh Institute of state fire service of EMERCOM of 
Russia 
PhD  
394052, Voronezh, Krasnoznamyonnaya Str., 231. 
tel. +7 (473) 2363–305. 
e–mail: sergey160@mail.ru 

Jatsun Sergei Feodorovich  
Southwest State University 
Doctor of Technical Sciences, Professor  
305040 Kursk, street 50 years of October, 94 
tel. +7 (4712) 22–26–26 
e–mail teormeh@inbox.ru 

 
  



Приборы, биотехнические системы и технологии 

142 ______________________________________________________________________ № 3 (329) 2018 

УДК 622.647 
 

А.В. ПАНИЧКИН, А.С. ТРУБИН, А.С. БОДРОВ 
 

ИССЛЕДОВАНИЕ ПРОЦЕССА ОЧИСТКИ КОНВЕЙЕРОВ  
В СЛОЖНЫХ КЛИМАТИЧЕСКИХ УСЛОВИЯХ 

 
Аннотация. В статье рассматривается актуальная проблема очистки несущего полотна ленточного 

конвейера большой мощности от прилипшего или примерзшего материала в сложных климатических условиях. 
Подробно описывается физика процесса очистки полотна с помощью скребкового очистительного 
устройства, основное внимание уделено зависимостям для определения сопротивления очистительного 
устройства, напряжений в примерзшем материале. Особо отмечается, что общее сопротивление 
очистительного устройства записано с учетом физико–механических свойств транспортируемого 
материала. Установлено, что в настоящее время нет единой классификации очистительных устройств, а 
имеющиеся классификации не лишены недостатков. На основе описанной классификации с целью установления 
критерия эффективности сделана попытка формализации по внутренним связям средств очистки, 
разделенным на структурные элементы по функциональным признакам независимо от исполнения и 
выраженным структурными формулами. 

Ключевые слова: ленточный конвейер, несущее полотно, очистка, надежность, скребок. 
 
Введение 
Налипание транспортируемого материала на несущее полотно конвейера, 

роликоопоры, звездочки и барабаны препятствует равномерному ходу рабочего полотна, 
вызывая увеличение сопротивления движению и снижение производительности конвейера. 
Особенно это влияет на надежность и работоспособность конвейеров в сложных 
климатических условиях, так как из–за осадков и низких температур транспортируемый 
материал примерзает к рабочим поверхностям и затрудняет их очистку. 

Основная часть 
Распространенным способом очистки рабочих поверхностей конвейеров является 

механический. Процесс механического отделения налипшего материала сопровождается 
сдвигом, резанием, вдавливанием рабочего элемента, отрывом частиц и характеризуется 
сопротивлением прилипшего или примерзшего материала [1, 2]. Для практических расчетов 
при определении суммарного сопротивления движению конвейеров сопротивление 
очистительного устройства определяют по эмпирическим формулам: 

а) при щеточном очистителе: 
щܹ ൌ 0,2 ∙ щݒ ∙ щݍ ∙ ܾ;                                                    (1) 

б) при скребковых или плужковых очистителях: 
сܹ ൌ осݍ ∙ ܾ.                                                           (2) 

где  ݒ – скорость щетки; 
 ;ос – прижатие рабочего органа очистителяݍ щ иݍ
ܾ – ширина ленты. 
Как видно из формул (1) и (2), в расчетах не учтены физико–механические свойства 

транспортируемого материала, внешние факторы, такие как температура окружающей среды 
и продолжительность транспортирования. Невозможно определить и основные параметры 
очистителя (потребляемую мощность устройства, размеры рабочего органа,  тип рабочего 
органа, усилие прижатия). Сопротивление очистительного устройства – с учетом 
сопротивления примерзшего материала в зависимости от температуры, времени 
транспортирования, усилия прижатия – можно выразить формулой: 

оܹ ൌ ܴ ൅ Ппр ∙ ݂,                                                    (3) 
где  ܴ – сила сопротивления сдвигу примерзшего материала в зависимости от влажности, 
температуры, времени транспортирования; 

Ппр ൌ ܳ ∙   ;усилие прижатия скребка к очищаемой поверхности – ܨ
݂ – коэффициент трения скребка о рабочую поверхность конвейера; 
ܳ – удельная сила прижатия; 
F – площадь контакта скребка с поверхностью.  
Рассмотрим схемы, отображающие процесс разрушения налипшего, примерзшего 
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Пользуясь методом В.В. Соколовского, найдем нормальную составляющую ߪ௬ 
напряжения по поверхности контакта скребка с примерзшим материалом: 

௡ߪ ൌ ௬ߪ ൌ ݇ctgߩ ቀ݁ቀ
ഏ
మ
ିଶఉାఘቁ୲୥ఘ ∙ cosଶߩ െ 1ቁ,                              (6) 

где  ߚ – угол наклона скребка. 
Значения удельной силы примерзания в зависимости от влажности, температуры 

окружающей среды, длительности примерзания определялись экспериментально [3]. 
Исследованиям подвергался суглинок влажностью 21,4 % при естественных отрицательных 
температурах фракции пробы менее 1 мм. Продолжительность примерзания образца 
определялась в зависимости от длины конвейера при условии установки очистителя у 
разгрузочной головки: 

ݐ ൌ ௅

଺଴௩к
, мин,                                                         (7) 

где  ܮ – длина транспортирования;  
 .к– скорость транспортированияݒ
Касательная компонента напряжения в точке контакта скребка с материалом 

определяется аналогично зависимости (4): 
߬ ൌ ൫ߪ௬ ൅  (8)                                                      ,ߩ൯tgߠ

где  ߠ – сцепление частиц материала со скребком. 
 Пренебрегая сцеплением материала со скребком, получим: 

߬ ൌ ݇ctgߩ ∙ tgߩ ቀ݁ቀ
ഏ
మ
ିଶఉାఘቁ୲୥ఘ ∙ cosଶߩ െ 1ቁ.                                    (9) 

Сила сопротивления очистки 

ܴ ൌ ඥܴఛଶ ൅ ܴఙଶ, 
где  ܴఛ – касательная составляющая силы сопротивления к траектории сдвига;  

ܴఙ – нормальная составляющая силы сопротивления к траектории сдвига, с учетом 
составляющих напряжения по поверхности контакта скребка с материалом, запишется как 

ܴ ൌ ௛∙௕

ୱ୧୬ఋ
ඥߪ௬ଶ ൅ ߬ଶ,                                                   (10) 

где  ݄ – толщина примерзшего слоя; 
ܾ – ширина скребка; 
 .угол сдвига – ߜ
Общее сопротивление очистительного устройства с учетом сопротивления 

примерзшего материала 

௢ܹ ൌ Ппр݂ ൅
௛∙௕

ୱ୧୬ఋ
ඥߪ௬ଶ ൅ ߬ଶ.                                           (11) 

В этом выражении учтены физико–механические свойства транспортируемого 
материала, такие, как температура окружающей среды, длительность транспортирования, 
параметры рабочего органа очистительного устройства и другие внешние факторы. 

В настоящее время нет единой классификации, учитывающей условия применения 
способов и средств очистки рабочих конвейеров в конкретных условиях. 

Классификации способов и средств очистки не лишены недостатков. В них 
отсутствуют критерии систематизации, оценки эффективности применения. 

Определенный интерес с методической точки зрения представляет принцип 
составления классификации, принятый в работах [4, 5], основанный на функциональных 
признаках основных элементов независимо от их конструктивного исполнения. 

Критерием составления предлагаемой классификации (таблица 1) принят процесс 
разрушения примерзшего материала, т.е. способ взаимодействия очищаемого и очищающего 
элементов и характеристика того или иного средства в соответствующем исполнении и 
конкретных условиях [6, 7, 8]. 
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Таблица 1 – Классификация средств по методу и способу очистки 
Очистка Средства 

очистки 
Ленточное полотно Металлическое 

полотно 
метод способ исполнение характери–

стика 
исполне–

ние 
характе–
ристика 

1 2 3 4 5 6 7 
Индиви–
дуальный 

Меха–
нический 

Скребки Однорядные, 
многорядные, 
струнные, 
веерные, 
плужковые, 
конвейерного 
типа 

Некачеств. 
очистка, 
износ ленты, 
при низких 
темп., не 
рекоменду–
ется 

 Не 
рекомен–
дуется, 
заштыбо–
вывается в 
местах 
сочлене–
ния 
пластин, 
не очища–
ются 
борта, 
сложность 
прижатия 

  Щетки Стационар–
ные, 
вращающиеся 
барабанные, 
конвейерного 
типа 

Относительно 
качеств. 
очистка, 
проста по 
констр–ии, но 
заштыбовы–
вается, 
рабочий орган 
из капрона, 
недолговечен 

Рабочий 
орган 
вращается 
в 
направле–
нии 
движения, 
поверхн. 
изгото–
вляется из 
каната, в 
виде 
шнеков, 
профиль–
ные, 
бесконеч–
ные 

 

  Ролико–
вые 

Диски, шнеки 
из пластмасс, 
резины, 
шины, 
пружинные 
опоры 

Относительно 
качеств. 
очистка в 
условиях 
примерзания 
вследствие 
скола, износ 
лент, 
сложность 
замены 
дисков, 
роликов 

Шнеки с 
пластмас–
совой или 
металли–
ческой 
навивкой 
из 
капрона 
или 
проволоки 
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Продолжение таблицы 1 
1 2 3 4 5 6 7 

Индиви–
дуальный 

Механи–
ческий 

Гидра–
влические 

Гидронасосы 
с приводом и 
специальные 
щелевые 
трубопроводы

Одновремен–
но убирается 
просыпь. 
Сложность 
процесса т.к. 
необходимо 
шламовое 
хозяйство, 
обмерзает 
барабан, 
лента, нужен 
больш. 
гидродина–
мич. удар 

Возможно 
примене–
ние того 
же 
исполне–
ния 

Хар–ка та 
же, что и 
при 
ленточном 
полотне 

  Пневма–
тические  

Необходим 
горячий пар 
или воздух, 
рекоменду–
ется при 
слабом 
примерзании 

Возможно 
применение, 
но не 
рекоменду–
ется 

  

 Электро–
физич. 

Электри–
ческие 

Электро–
смотические 
щиты, 
электроды 

Опыта 
эксплуатации 
нет 

 Не 
рекомен–
дуется из–
за 
сложности 
подвода 
тока 

Комби–
нирован–
ный 

Термоме–
ханиче–
ский 

Аэроме–
ханичес–
кие  

Реактивные 
двигатели, 
компрессоры 
с горячим 
воздухом, 
газами, 
парами 

Имеется опыт 
уборки 
просыпей 
реакт. двиг–
ми. 
Необходим 
гидродинам. 
удар, доп. 
мех. средства 

Возможно Рекоменду
ется 
горячую 
струю 
подавать 
между 
ветвями и 
очищать 
щеточны–
ми 
чистками 

Индиви–
дуальный 

Механи–
ческий 

Вибра–
ционные 

Ударные, 
ударно–
вибрацион–
ные с 
вибратором, 
ультразвуко–
вые 

Необх. 
установ. 
дополнит. 
чистки, износ 
ленты 

 Не 
рекоменд. 
вслед–
ствие 
износа 
тягово–
несущего 
органа, 
звездочек 
из–за 
вибрации  
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Продолжение таблицы 1 
1 2 3 4 5 6 7 

Комби–
нирован–
ный 

Термоме–
ханичес–
кий 

Гидро–
механи–
ческий 

Гидроуста–
новки со 
сжатой струей 
горячей воды, 
жидкостные 
ванны для 
погружен. 

Возможность 
гидросмыв. 
просыпей. 
Качеств. 
очистка с 
щетками, 
скребками, но 
сложность 
эксплуатации 

То же, что 
при 
ленточном 

То же, что 
при 
ленточном 

  Электри–
ческий 

Электричес–
кие 
нагреватели с 
механичес–
кими 
чистками 

Опыта 
эксплуатации 
нет 

 То же, что 
при 
ленточном 

  Лучевой 
механи–
ческий 

Инфракрас–
ными лучами, 
лазерными 
установками с 
мех. чисткой  

Опыта 
эксплуатации 
нет 

То же, что 
при 
ленточном 

То же, что 
при 
ленточном 

 Хими–
ческий 

Профи–
лактика 
хим. 
средства–
ми  

Профилакти–
ка хим. 
средствами, 
покрытие, 
очистка мех. 
средствами  

Покрытие 
лаками не 
дает эффекта, 
хим. средства 
более 
эффективны, 
но дороги 

То же, что 
при 
ленточном 

То же, что 
при 
ленточном 

 
Для условий очистки несущего полотна конвейеров от примерзающих материалов все 

средства и способы объединены в индивидуальный и комбинированный методы по признаку 
возможности применимости того или иного способа или средства отдельно или в 
комбинации с другими. Методы очистки разделены на способы по признаку воздействия 
рабочего органа в зоне контакта примерзшего материала с рабочей поверхностью; 
индивидуальный – на механический и электрический; комбинированный – на 
термомеханический и химический. 

Способы разделены на группы, в которые входят средства по функциональным 
признакам. Характеристика соответствующего средства очистки рекомендуемого 
исполнения выражена для конкретных условий, т.е. для прорезиненной или металлической 
поверхностей несущего полотна конвейеров при низких температурах. Например, при 
эксплуатации ленточных конвейеров в осенне–зимние периоды возможно применение 
индивидуального метода почти со всеми средствами механического способа очистки, а в 
случае эксплуатации пластинчатых конвейеров указано возможное исполнение средств 
очистки без характеристик их применения. Последнее объясняется почти полной 
неисследованностью очистки рабочих поверхностей пластинчатых конвейеров при низких 
температурах. 

Таким  образом, предлагаемая классификация систематизирует средства очистки в 
зависимости от ее процесса конструктивного исполнения по функциональным признакам, 
конкретных условий и режима эксплуатации [9]. 

Заключение. 
На основе описанной классификации с целью установления критерия эффективности 
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сделана попытка формализации по внутренним связям средств очистки, разделенным на 
структурные элементы по функциональным признакам независимо от исполнения и 
выраженным структурными формулами. При этом выделены следующие структурные 
элементы: энергетический преобразователь (привод, различные энерготехнические 
преобразователи, например, ультразвуковой и т.д.); промежуточный элемент (редуктор, 
барабан, бесконечная лента или цепь и т.п.); рабочий орган. 

На основе условных обозначений связей структурная формула (базовая) средств 
очистки в общем виде запишется  

4 െ ܦ െ ݊.                                                                   (12) 
Примером очистительного устройства, описываемого базовой структурной формулой, 

может служить устройство щеточного типа, у которого щетки закреплены в пазах барабана 
или на бесконечной ленте, имеющей отводные барабаны, насаженные на вал, соединенные 
посредством жесткой муфты с редуктором, а последний – с электродвигателем также через 
жесткую муфту. 

Пользуясь принципами последовательного совмещения и выражения структурных 
элементов базовой структурной формулы (12), получаем возможные структурные формулы 
средств очистки, независимо от того, были когда–либо применены или изготовлены 
очистители по ним или нет [10, 11]. 

Формула, полученная совмещением структурных элементов 
4xܦ െ ݊                                                                       (13) 

позволяет выразить в виде структурных формул роликовые средства очистки 
4xܦ െ ݊ ൌ ೙݌

೘

ш െ ݊௡,                                                         (14) 

где  4xܦ ൌ ೙݌
೘

ш – шнековое очистительное устройство с пластмассовым или 

металлическим рабочим органом, т.е. промежуточный элемент (барабан) и рабочий (навивка) 
– совмещены и представляют собой шнек. 
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A.V. PANICHKIN, А.S. TRUBIN, А.S. BODROV 

 
STUDY OF THE CONVEYORS CLEANING PROCESS 

IN COMPLEX CLIMATIC CONDITIONS 
 

Abstract. The actual problem of cleaning a high–capacity conveyor belt from adherent or frozen material 
under difficult climatic conditions is considered in the article. The physics of the web cleaning process is described in 
detail with the help of a scraper cleaner, the main attention is paid to the dependencies for determining the resistance of 
the cleaning device, the stresses in the frozen material. It is specially noted that the total resistance of the cleaning 
device is recorded taking into account the physico–mechanical properties of the material being transported. It is 
established that at present there is no single classification of purifying devices, and the existing classifications are not 
without shortcomings. On the basis of the described classification, in order to establish a criterion of efficiency, an 
attempt has been made to formalize internal means of cleaning facilities, divided into structural elements according to 
functional characteristics, regardless of their performance and expressed structural formulas. 

Keywords: belt conveyor, carrying linen, cleaning, reliability, scraper. 

BIBLIOGRAPHY 
 

1. Zelensky O.V. Guide to the design of belt conveyors. – St. Petersburg: Nedra, 2009. – 376 p. 
2. Kozhushko G.G. Calculation and design of belt conveyors: an educational–methodical manual / G.G. 

Kozhushko, O.A. Lukashuk. – Ekaterinburg: Ural University Publishing House, 2016. – 232 p. 
3. Shakhmeister L.G., Dmitriev V.G. Theory and calculation of belt conveyors. – Moscow: Mechanical 

Engineering, 1987. – 336 p. 
4. Solod G.I. Intermediate Drives / G.I. Solod, L.I. Chugreev. – Moscow: Mechanical Engineering, 1976. – 199 p. 
5. Solod G.I. Structure formation and classification of means of mechanization of overburden / G.I. Solod, 

A.N. Daniyarov // Collection of works «Mechanization and automation of production processes in the mining industry». 
– Karaganda, Karaganda Polytechnic Institute, 1973. – 350 p. 

6. Panichkin A.V. Continuous transport machines: method. instructions on the issue. course work: special. 
190205 / AV Panichkin; «State University – educational–scientific–production complex», Department «Lifting, 
transport, construction and road machines.» – Orel: Publishing house State University – educational–research and 
production complex, 2013. – 79 p. 

7. Izrailevich M.L. Tubular scraper and flightless spiral conveyors – perspective types of machines for 
continuous transport / M.L. Izrailevich // Lifting and transport. – №6. – 2007. – 9–13 р. 

8. Nikolayev N.I. Problems of technical operation of technological equipment of port grain loading complexes 
/ N.I. Nikolaev, V.A. Savchenko, R.G. Dubrovin // Lifting and transport. – No. 5–6 (75). – 2013. – 25–26 p. 

9. Pavlova A.A. Optimization of belt conveyor parameters / А.А. Pavlova // Scientific almanac. – No. 4–3 
(30). – 2017. – p. 135–136. 

10. Rachkov E.V. Constructions and operational properties of transport and transport–technological machines 
and equipment [Electronic resource]: a tutorial / E.V. Rachkov. – Electron. text data. – Moscow: Moscow State 
Academy of Water Transport, 2013. – 88 c. – 2227–8397. – Access mode: http://www.iprbookshop.ru/46471.html 

11. Gorbunova L.N. Improving the safety of belt conveyors / L.N. Gorbunova, Ya.L. Lieberman // Mechanical 
engineering and life safety. – No. 3. – 2011. – p.4–7. 
 
Panichkin Anton Valerevich
Orel state University named after I. S. 
Turgenev   
Candidate of Engineering Sciences, 
Associate Professor, Head of the 
Department of Lifting, Transport, 
Construction and  Road Machinery  
302030, Orel, Moskovskaya st., 77 
Теl. 89066637799 
E–mail: teppa79@yandex.ru 

Trubin Aleksey Sergeevich
Orel state University named after I. S. 
Turgenev   
Postgraduate of the Department of 
Lifting, Transport, Construction and  
Road Machinery  
302030, Orel, Moskovskaya st., 77 
Теl. 89155082664 
E–mail: Alextrubin@yandex.ru 

 

Bodrov Andrey Sergeevich
Orel state University named after I. S. 
Turgenev   
Candidate of Engineering Sciences, 
Associate Professor of  Machine 
Maintenance and Repair Department 
302030, Orel, Moskovskaya st., 77 
Теl. 8–905–856–65–56 
E–mail: bodrov57@gmail.com 

 



Контроль, диагностика, испытания и управление качеством 

150 ______________________________________________________________________ № 3 (329) 2018 

КОНТРОЛЬ, ДИАГНОСТИКА, ИСПЫТАНИЯ 
И УПРАВЛЕНИЕ КАЧЕСТВОМ 

УДК 629.735.45:551.53 
 

Е.О. АРИСКИН, М.Р. МИННЕБАЕВ, А.В.НИКИТИН, В.В. СОЛДАТКИН, В.М. СОЛДАТКИН 
 

ПОСТРОЕНИЕ И АЛГОРИТМЫ СИСТЕМЫ КОНТРОЛЯ ВОЗДУШНЫХ 
ПАРАМЕТРОВ ПОЛЕТА И ОКРУЖАЮЩЕЙ СРЕДЫ НА БОРТУ 

ВЕРТОЛЕТА С ИОННО–МЕТОЧНЫМИ И АЭРОМЕТРИЧЕСКИМИ 
ИЗМЕРИТЕЛЬНЫМИ КАНАЛАМИ 

 
Аннотация. Рассматривается проблема контроля воздушных параметров полета и окружающей 

среды на борту вертолета на стоянке, стартовых и взлетно–посадочных режимах эксплуатации, связанная с 
влиянием аэродинамических возмущений вихревой колонной несущего винта. Раскрываются особенности 
построения, алгоритмы обработки информации и недостатки системы, построенной на основе 
неподвижного многоканального аэрометрического приемника. Обосновываются конкурентные преимущества, 
приводятся функциональная и конструктивная схемы системы контроля воздушных параметров полета и 
окружающей воздушной среды, построенной на основе ионно–меточного датчика аэродинамического угла и 
истинной воздушной скорости. Приводятся алгоритмы формирования и обработки информации 
измерительных каналов системы на стоянке до запуска силовой установки и при вращении несущего винта, 
при рулении и маневрировании по земной поверхности, на взлетно–посадочных и полетных режимах 
эксплуатации вертолета. 

Ключевые слова: вертолет, воздушные параметры полета и окружающей среды, контроль на борту 
вертолета, система, неподвижный приемник, ионно–меточные и аэрометрические каналы, функциональная и 
конструктивная схема, алгоритмы обработки информации. 

 
Введение 
В различных отраслях промышленности, в энергетике и строительстве широкое 

применение находят вертолеты различных классов. Эксплуатация вертолетов происходит в 
приземном возмущенным слое атмосферы в условиях значительных ветровых возмущений, 
поэтому при пилотировании и решении задачи обеспечения безопасности полета вертолета 
необходима достоверная информация о величине и составляющих вектора истинной 
воздушной скорости, аэродинамических углах атаки и скольжения, барометрической высоте 
и приборной скорости, скорости и угле направление вектора ветра относительно продольной 
оси вертолета, атмосферном давлении и плотности, о других воздушных параметрах, 
определяющих аэродинамику и динамику движения вертолета относительно окружающей 
воздушной среды на всех этапах и режимах полета [1].  

На стоянке, при рулении и маневрирование по земной поверхности (стартовые 
режимы), при взлете и наборе высоты, снижении, висении и посадке (взлетно–посадочные 
режимы), при полете с малыми скоростями на работу бортовых средств контроля воздушных 
параметров полета и окружающей среды оказывают существенное влияние индуктивные 
потоки вихревой колонны несущего винта, ограничивающие использование традиционных 
средств [2], что обусловливает необходимость разработки систем контроля воздушных 
параметров полета и окружающей среды, максимально учитывающих аэродинамику и 
динамику полета вертолета.  

Варианты построения системы контроля воздушных параметров полета и 
окружающей среды на основе неподвижного многофункционального аэрометрического 
приемника 

Возможности по преодолению ограничений, связанных с влиянием индуктивных 
потоков несущего винта, открываются при использовании для целей измерения воздушных 
параметров полета и окружающей среды информации аэродинамического поля вихревой 
колонны несущего винта [3], воспринимаемой неподвижным многофункциональным 
аэрометрическим приемником, выходные сигналы которого регистрируются 
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приемник находится вне зоны действия вихревой колонны несущего винта. 
Для восприятия аэрометрической информации на стоянке при запуске силовой 

установки и вращении несущего винта, на режиме руления и маневрирования вертолета по 
земле и на взлетно–посадочных режимах, при полете на малых скоростях, когда 
неподвижный многоканальный проточный аэрометрический приемник 1 находится в створе 
вихревой колонны несущего винта, на наружной поверхности экранирующего диска 3 
установлен дополнительный аэрометрический приемник 7 в виде полусферы с диаметром, 
равным диаметру верхнего экранирующего диска. На поверхности полусферы на оси 
симметрии расположено отверстие, являющееся приемником полного давления РПΣ 
результирующего воздушного потока вихревой колонны. В плоскости, параллельной 
плоскости симметрии вертолета, под углом φ01 к оси симметрии, симметрично расположены 
отверстия, являющиеся приемниками давлений Р1 и Р2. В плоскости, перпендикулярной 
плоскости симметрии вертолета, под углом φ02 к оси симметрии, расположены отверстия, 
являющиеся приемниками давлений Р3 и Р4. Перпендикулярно оси симметрии сферического 
приемника на его поверхности, например по окружности расположены отверстия, 
объединенные в общем канале, являющимся приемником статического давления РСТΣ 
результирующего воздушного потока вихревой колонны. 

При рулении и маневрировании по земле и на взлетно–посадочных режимах, при 
полете с малыми скоростями за меру величин составляющих вектора скорости ветра W  и 
вектора истинной воздушной скорости ВV  вертолета принимается угловое положение 

вектора скорости V  результирующего воздушного потока вихревой колонны несущего 
винта, определяемое углами φ1 и φ2, которые регистрируются ортогонально 
расположенными приемниками давлений Р1 и Р2, Р3 и Р4. 

Давления Р1 и Р2, Р3 и Р4, РПΣ и РСТΣ, воспринимаемые дополнительным 
аэрометрическим приемником 3, подключены ко входам пневмоэлектрических 
преобразователей, выходы которых через последовательно соединенные мультиплексор и 
аналого–цифровой преобразователь подключены к микропроцессору. На вход 
микропроцессора также подключены выходы приемника температуры торможения 
результирующего набегающего воздушного потока вихревой колонны несущего винта и 
выходы пневмоэлектрических преобразователей давлений Рi, Рαi, Рαi–1, РСТ.Д, 
воспринимаемых неподвижным многоканальным проточным аэрометрическим приемником 
1. Выход микропроцессора является выходом бортовой системы по величине и углу 
направления или продольной и боковой составляющим вектора скорости ветра W  и 
истинной воздушной скорости ВV  на стоянке, при рулении и маневрировании по земной 
поверхности, при взлете и посадке, в области малых и околонулевых скоростей полета и на 
режиме висения, когда неподвижный многофункциональный аэрометрический приемник 
находится в зоне вихревой колонны несущего винта. 

Однако построение неподвижного многоканального аэрометрического приемника на 
основе многоканального проточного аэрометрического приемника связано с 
необходимостью защиты большого числа трубок полного давления, установленных в его 
проточном канале, от обледенения, попадания пыли и влаги в реальных условиях 
эксплуатации вертолета. Многоканальная схема преобразования воспринимаемых давлений 
обуславливает жесткие требования к идентичности и стабильности характеристик 
аэрометрических измерительных каналов. Все это усложняет конструкцию, снижает 
надежность, повышает стоимость, сдерживает применение системы контроля воздушных 
параметров полета и окружающей среды на вертолетах различного класса и назначения. 

Система контроля воздушных параметров полета и окружающей среды с 
неподвижным приемником потока, ионно–меточными и аэрометрическмим 
измерителньными каналами 

Для устранения недостатков системы контроля воздушных параметров на основе 
неподвижного многофункционального приемника и аэрометрических измерительных 
каналов предлагается система, функциональная схема которой приведена на рисунке 2. [7]. 
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где  αi – текущее значение измеряемого угла в пределах i–го рабочего сектора.  
При работе канала определения скорости Wг вектора горизонтального ветра гW  

формируется интервал времени τW  пролета ионной метки расстояния R от точки генерации 0 
ионной метки до окружности с приемными электродами. В соответствии с интервалом 
времени τW в вычислительном устройстве вырабатывается цифровой код NW, 
пропорциональный величине скорости горизонтального ветра  

W

R
W


г .                                                                     (3) 

На стоянке при запуске силовой установки и вращении несущего винта, при 
рулении и маневрировании по земной поверхности, на взлетно–посадочных режимах в 
работу включается второй – аэрометрический канал, выполненный на основе неподвижного 
полусферического аэрометрического приемника, жестко установленного над системой 
приемных электродов ионно–меточного датчика аэродинамического угла и воздушной 
скорости. 

По полному РПΣ и статическому РСТΣ давлениям и температуре TТΣ торможения 
результирующего воздушного потока вихревой колонны несущего винта, воспринимаемой 
приемником температуры торможения, установленным на фюзеляже в зоне действия 
вихревой колонны несущего винта можно определить величину (модуль) вектора скорости 

V  результирующего воздушного потока вихревой колонны несущего винта, используя 
соотношение [4]: 

,
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где параметры, входящие в формулу (4) имеют размерности в единицах системы СИ. 
Проекции вектора V  скорости результирующего воздушного потока вихревой 

колонны несущего на оси связанной системы координат определяются как  
VΣx = VΣsinφ1;     VΣy = VΣcosφ1cosφ2;    V Σz = V Σsinφ2.                         (5) 

где  φ1 и φ2 – углы, определяющие положение вектора скорости V  результирующего 
воздушного потока вихревой колонны несущего относительно осей полусферического 
аэрометрического приемника, которые определяются по давлениям Р1, Р2 и Р3, Р4. 

Используя соотношения для определения давления на поверхности полусферического 
аэрометрического приемника, приведенные в работе [10], углы φ1 и φ2, определяющие 
положение вектора скорости V  результирующего набегающего воздушного потока 
вихревой колоны несущего винта, будут определяться соотношениями 
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где  φ10 и φ20 – углы расположения отверстий для забора давлений Р1, Р2 и Р3, Р4. 
Поскольку неподвижный панорамный ионно–меточный датчик аэродинамического 

угла и истинной воздушной скорости с установленным над его системой приемных 
электродов полусферическим аэрометрическим приемником расположен на фюзеляже на 
определенном радиус–векторе R  от центра масс вертолета, то при вращении вертолета 
относительно центра масс имеет место кинематическое искажение вектора скорости V  
воздушного потока, набегающего на аэрометрический приемник, которое определяется 
векторным уравнением вида [2] 
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),,(ωк zyxRVV  ,                                                     (7) 

где  кV  – кинематически искаженный вектор скорости набегающего воздушного потока в 
месте установки неподвижного комбинированного  аэрометрического приемника;  

 ),,( zyx   – вектор угловой скорости вращения вертолета относительно 

центра масс;  
zyx  ,,  – угловые скорости вращения вертолета относительно осей связанной 

системы координат;  
x, y, z – координаты места установки неподвижного панорамного меточного датчика 

аэродинамического угла и воздушной скорости с установленным над его системой приемных 
электродов полусферическим аэрометрическим приемником в связанной системе координат, 
центр которой находится в центре масс вертолета. 

Проекции вектора скорости кV  на оси связанной системы координат будут 
определяться системой уравнений вида  

Vкx=Vx+(ωyz‒ωxy);    Vкy=Vy+(ωzx‒ωxz);    Vкz=Vz+(ωxy‒ωyx),                      (8) 
где  Vx, Vy, Vz – проекции вектора истинной воздушной скорости ВV  на оси связанной 
системы координат. 

Продольная и боковая составляющие Vx, Vz и величина (модуль) VВ вектора истинной 
воздушной скорости ВV , углы атаки α и скольжения β вертолета, статическое давление РН и 
барометрическая высота Н будут определяться соотношениями [4]:  
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где  Р0=101325 Па и Т0=288,15 К – абсолютное давление и абсолютная температура воздуха 
на высоте Н = 0 стандартной атмосферы;  

R – удельная газовая постоянная воздуха (R = 287,05287 Дж/кгК);  
τ – температурный градиент (τ = 0,0065 К/м);  
Kр – безразмерный коэффициент, определяющий связь РСТΣ и РН, который определяется 

при летных испытаниях для конкретного типа вертолета и места установки на фюзеляже 
неподвижного панорамного ионно–меточного датчика аэродинамического угла и воздушной 
скорости с установленным на нем осесимметричным полусферическим аэрометрическим 
приемником;  

Kiy – безразмерный коэффициент, определяемый аналогично Kix и Kiz. 
Используя информацию о величине Vп и угле сноса ψс вектора путевой скорости ПV  от 

доплеровского измерителя скорости и угла сноса (ДИСС) и  о составляющих вектора истинной 
воздушной скорости ВV  от аэрометрического канала, продольная Wx, боковая Wz 

составляющие, величина (модуль) Wг и направление ψ горизонтального вектора ветра гW  на 
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взлетно–посадочных режимах вертолета будет определять соотношениями [5]:  

Wx = |Vx| ‒ Vп cosψc;   Wz = |Vz| ‒ Vп sinψc;   ψ = β + ψс;   .22
г zx WWW          (10)  

При скоростях полета, когда неподвижный датчик первичной информации системы 
измерения воздушных параметров вертолета с аэрометрическими и ионно–меточными 
измерительными каналами выходит из зоны вихревой колонны несущего винта для 
определения воздушных параметров полета и окружающей среды используется информации 
аэрометрического и ионно–меточного измерительных каналов. 

По информации ионно–меточного измерительного канала по соотношениям, 
аналогичным (1) – (3) определяются истинная воздушная скорость VВ и угол скольжения β  
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где  V  – время пролета ионной метки от разрядника до окружности с приемными 

электродами при данной истинной воздушной скорости VВ. 
Для определения барометрической высоты Н на наружной поверхности платы 1 с 

приемными электродами (рис. 2) ионно–меточного датчика аэрометрического угла и 
истинной воздушной скорости располагается отверстие–приемник для забора статического 
давления РН набегающего воздушного потока. Тогда барометрическая высота Н будет 
определяться известным соотношением [4] 
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Вертикальная воздушная скорость Vу будет определяться путем вычисления 
производной по времени от барометрической высоты 

1

1)()(
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V ,                                                     (12) 

где  it  и 1it  – текущий и предшествующие моменты времени, в которых произведены 

вычисления барометрической высоты. Возможно использование алгоритма вычисления 
вертикальной воздушной скорости по большему числу значений барометрической высоты, 
полученных через фиксированный интервал времени τ, например, вида 
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Угол атаки вертолета можно определить, используя соотношение 
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тем самым обеспечивая контроля всех воздушных параметров полета вертолета и 
окружающей среды на режимах эксплуатации, когда неподвижный приемник выходит из 
зоны вихревой колонны несущего винта. 

Заключение 
Таким образом, используя информацию, воспринимаемую неподвижным датчиком 

первичной информации, выполненным в виде неподвижного панорамного ионно–меточного 
датчика аэродинамического угла и воздушной скорости с установленным над его системой 
приемных электродов полусферическим аэрометрическим приемником, в вычислительном 
устройстве, выполненным в виде вычислителя, реализующего алгоритмы (1) – (3), (5), (6), 
(9), (10), определяются параметры вектора скорости ветра и другие воздушные параметры 
вертолета, на стоянке при запуске силовой установки и вращении несущего винта, при 
рулении и маневрировании по земной поверхности, при взлете и наборе высоты, при полете 
на малых скоростях и на режимах снижении, на режимах висения и посадки вертолета. 

Установка на наружной поверхности платы приемных электродов ионно–меточного 
датчика аэродинамического угла отверстия–приемника статического давления набегающего 
воздушного потока позволяет вычислить воздушные параметры полета вертолета и 
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окружающей среды при выходе датчика первичной информации из зоны вихревой колонны 
несущего винта. 

Предложенные подходы к построению, модели и алгоритмы обработки первичной 
информации системы воздушных параметров полета вертолета и окружающей среды с 
ионно–меточными и аэрометрическими измерительными каналами позволяют определить 
параметры вектора ветра и высотно–скоростные параметры вертолета в широком диапазоне 
эксплуатации, в том числе на стоянке, стартовых и взлетно–посадочных режимах, при полете 
в диапазоне малых и полетных скоростях. 

Применение рассмотренной системы измерения воздушных параметров на различных 
классах вертолетов позволяет повысить безопасность эксплуатации и эффективность 
решения полетных задач. 

Работа выполнена по гранту РФФИ №18–32–00187 
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E.O. ARISKIN, M.R. MINNEBAYEV, A.V. NIKITIN, V.V. SOLDATKIN, V.M. SOLDATKIN 
 

THE CONSTRUCTION AND ALGORITHMS OF CONTROL SYSTEM  
OF AIRCRAFT FLIGHT PARAMETERS AND ENVIRONMENT ON BOARD 

THE HELICOPTER WITH THE ION–TAGGING AND AEROMETRIC 
MEASUREMENT CHANNELS 

 
Abstract. The problem of control of air parameters of flight and environment on board the helicopter on the 

parking, starting and takeoff and landing modes of operation associated with the influence of aerodynamic disturbances 
of the vortex column of the main rotor is considered. Features of construction, algorithms of information processing 
and shortcomings of the system constructed on the basis of the motionless multichannel aerometric receiver are 
revealed. Justify the competitive advantage, provides a functional and structural diagrams of the control system of 
flight parameters and environment based on ion–label sensor for aerodynamic angle and true airspeed. Algorithms of 
formation and processing of information of measuring channels of system on parking before start of power plant and at 
rotation of the rotor, at taxiing and maneuvering on an earth’s surface, on takeoff and landing and flight modes of 
operation of the helicopter are resulted. 

Keywords: helicopter, air parameters of the flight and the environment, control on board the helicopter, 
system, fixed receiver, ion–tagging and aerometric channels, functional and design scheme, information processing 
algorithms. 
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автоматический перенос. Все кавычки должны быть угловыми («  »). Все символы «тире» 
должны быть среднего размера («–», а не «-»). Начертание цифр (арабских, римских) во всех 
элементах статьи – прямое (не курсив). 

 Структура статьи:  
УДК; 
Список авторов на русском языке – 12 пт, ВСЕ ПРОПИСНЫЕ в формате И.О. ФАМИЛИЯ 
по центру без абзацного отступа; 
Название (не более 15 слов) на русском языке – 14 пт, полужирным, ВСЕ ПРОПИСНЫЕ 
по центру без абзацного отступа; 
Аннотация (не менее 200–250 слов) на русском языке – 10 пт, курсив; 
Ключевые слова на русском языке (не менее 3 слов или словосочетаний) – 10 пт, курсив; 
Текст статьи; 
Список литературы (в порядке цитирования, ГОСТ 7.1–2003) на русском языке, заглавие 
списка литературы – 12 пт, полужирным, ВСЕ ПРОПИСНЫЕ по центру без абзацного 
отступа, литература оформляется 10 пт. 
Сведения об авторах на русском языке – 10 пт. Приводятся в такой последовательности:  
Фамилия, имя, отчество;  
учреждение или организация; 
ученая степень, ученое звание, должность; 
адрес; 
телефон; 
электронная почта. 

 Название статьи, фамилии и инициалы авторов, аннотация, ключевые слова, список 
литературы (транслитерация) и сведения об авторах обязательно дублируются на 
английском языке ЗА СТАТЬЕЙ. 

 Формулы набираются в редакторе формул Microsoft Equation. Размер символов: 
обычные – 12 пт, крупный индекс – 9 пт, мелкий индекс – 7 пт. Нумерация формул – по 
правому краю в круглых скобках «( )». Описание начинается со слова «где» без двоеточия, 
без абзацного отступа; пояснение каждого символа дается с новой строки в той 
последовательности, в которой символы приведены в формуле. Единицы измерения даются в 
соответствии с Международной системой единиц СИ. 

 Рисунки – черно–белые. Если рисунок создан средствами MS Office, необходимо 
преобразовать его в картинку. Для растровых рисунков разрешение не менее 300 dpi. 
Подрисуночные надписи выполнять шрифтом Times New Roman, 10 пт, полужирным, 
курсивным, в конце точка не ставится. 

 Рисунки с подрисуночной подписью, формулы, выравниваются по центру без 
абзацного отступа. 

С полной версией требований к оформлению научных статей Вы можете озна-
комиться на сайте http://oreluniver.ru/public/file/science/journal/fipptt/ 

Плата за опубликование статей не взимается. 
Право использования произведений предоставлено авторами на основании п. 2 ст. 

1286 Четвертой части Гражданского Кодекса Российской Федерации. 
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