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МЕХАНИКА ДЕФОРМИРУЕМОГО ТВЕРДОГО ТЕЛА, 
ДИНАМИКА И ПРОЧНОСТЬ 

УДК 624.012.45  
 

В.И. КОРОБКО, А.А. ЧЕРНЯЕВ, С.В. ШЛЯХОВ, В.О. ТЮРИН 
 

ВЗАИМОСВЯЗЬ МАКСИМАЛЬНОГО ПРОГИБА И ОСНОВНОЙ 
ЧАСТОТЫ КОЛЕБАНИЙ ПЛАСТИНОК 

 
Аннотация. В статье исследуется вопрос о взаимосвязи максимального прогиба и основной частоты 

колебаний пластинок. Представляется графическая и аналитическая зависимости между вышеуказанными 
параметрами для пластинок с различными граничными условиями (шарнирное опирание по всему контуру и 
жесткое защемление). Выводится аппроксимирующая функция произведения максимального прогиба на 
квадрат основной частоты колебаний пластинок в зависимости от отношения внутреннего и внешнего 
конформных радиусов, позволяющая получить элементарные формулы для определения значений 
максимального прогиба по основной частоте колебаний и наоборот – основной частоте колебаний по 
значению максимального прогиба. 

Ключевые слова: упругие пластинки в форме многоугольников, описанных вокруг окружности, 
жесткое защемление, шарнирное опирание, максимальный прогиб пластинок, основная частота колебаний, 
отношение конформных радиусов. 

 
Введение. 
Пластинки в форме треугольников, ромбов, правильных n–угольников 

(многоугольники, описанные вокруг окружности) находят широкое применение в качестве 
несущих элементов конструкций при строительстве зданий и сооружений (в настилах 
мостов, автомобильных развязок, продольная ось которых наклонна по отношению к 
препятствию и др.), в гидротехнических сооружениях, а также в специальном 
машиностроении (судо–, авиа– и ракетостроении). Проблема обеспечения эксплуатационной 
надежности несущих конструкций требует проведения различных расчетов, среди которых 
одним из основных является расчет жесткости конструкций под действием внешней 
нагрузки и определение их основной частоты колебаний в ненагруженном состоянии для 
проведения динамических расчетов. Точных решений задач поперечного изгиба и свободных 
колебаний пластинок в научной и справочной литературе приводится немного [1, 2], 
известны лишь решения для прямоугольных и круглых пластинок при простейших видах 
загружения и опирания по контуру. В более сложных случаях используются приближенные 
методы, в основном численные. Однако решения задач теории пластинок с помощью 
численных методов обладают рядом недостатков, среди которых основным является 
сложность анализа полученных результатов и распространения этих результатов на 
семейство пластинок определенной формы с определенными граничными условиями. 
Поэтому в строительной механике по–прежнему придаётся большое значение разработке, 
развитию и совершенствованию простых аналитических приближённых методов решения 
задач теории пластинок.  

Основная часть 
Лишенными указанного недостатка являются геометрические методы, интенсивно 

развивающиеся в последние два десятилетия. С историей их развития, физической и 
геометрической сущностью можно познакомиться, например, в монографии [3]. Эти методы 
получил существенное развитие в работах ученых и аспирантов Орловского 
государственного университета им. И.С. Тургенева [6–13]. Они широко используются в 
случаях, когда необходимо оперативно получить оценку искомой физической 
характеристики пластинки, или когда не требуется высокая точность расчёта, что особенно 
актуально на начальной стадии проектирования при выборе наиболее рациональных 
вариантов. Такие методы позволяют избежать решения сложных дифференциальных 
уравнений, не требуют мощных ЭВМ и позволяют, проводя только геометрические расчеты, 
находить интегральные физические характеристики пластинок. 

Среди геометрических методов следует выделить два: изопериметрический метод 
(ИЗПМ) теоретические основы которого изложены в работе [4] и метод интерполяции по 
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граничными условиями (любая комбинация жесткого защемления и шарнирного опирания 
по контуру), то есть для пластин одной и той же формы, но с разными граничными 
условиями произведение ω2w0 есть величина постоянная. Эта закономерность носит 
фундаментальный характер и позволяет по известным решениям для w0 находить значения ω 
и наоборот. 

 

Таблица 1 – Взаимосвязь максимального прогиба и основной частоты колебаний 
пластинок 

 
Форма 

пластинки 

Шарнирное опирание Жесткое защемление 
1000 0w  ω  2ω ·10–3 1000 0w  ω  2ω ·10–3 

Пластинки в форме правильных фигур
16–угольник 6,175 17,969 0,323 1,573 32,244 1,040
8–угольник 5,346 18,124 0,328 1,535 32,557 1,060
6–угольник 4,889 18,384 0,338 1,478 33,089 1,095
4–угольник 4,082 19,597 0,384 1,267 35,621 1,301
3–угольник 3,101 22,741 0,517 0,900 42,566 1,812

Пластинки в форме равнобедренных треугольников
α=80˚ 1,617 31,068 0,965 0,428 58,781 3,787
α=70˚ 2,801 24,007 0,576 0,793 45,422 2,065
α=60˚ 3,101 22,741 0,517 0,900 43,026 1,812
α=50˚ 2,892 23,621 0,558 0,824 44,691 1,961
α=40˚ 2,337 26,151 0,684 0,647 49,478 2,526
α=30˚ 1,634 30,905 0,955 0,434 58,473 3,825

Пластинки в форме прямоугольных треугольников
α=45˚ 2,647 24,678 0,609 0,743 46,691 2,205
α=40˚ 2,605 24,866 0,618 0,730 47,047 2,245
α=35˚ 2,475 25,477 0,649 0,689 48,184 2,375
α=30˚ 2,261 26,548 0,705 0,624 50,229 2,614
α=25˚ 1,964 28,334 0,803 0,534 53,608 3,029
α=20˚ 1,604 31,184 0,972 0,424 59,001 3,825

Пластинки в форме ромбов

α=90˚ 4,082 19,597 0,384 1,267 37,078 1,252
α=80˚ 3,989 19,808 0,392 1,237 37,475 1,301
α=70˚ 3,734 20,465 0,419 1,147 38,720 1,406
α=60˚ 3,376 21,644 0,468 1,009 40,951 1,657
α=50˚ 2,921 23,498 0,552 0,834 44,459 1,961
α=40˚ 2,293 26,378 0,696 0,634 49,908 2,576
α=30˚ 1,600 31,219 0,975 0,423 59,067 3,836

Примечание – В таблице не учитывались пластинки с очень острыми углами, так как такие пластинки редко 
используются в качестве элементов строительных конструкций.

 

Рассмотрим взаимосвязь произведения 2
0ω w  с отношением конформных радиусов r r

. На основе данных таблицы 2 (колонки 2, 5, 6) построим график 2
0ω w  – r r  (рисунок 2) и 

соответствующую аппроксимирующую функцию: 
2 3 2

0ω w = (0,0004(r r ) - 0,0194(r r ) + 0,276(r r ) + 0,6113)×q / m.                         (2) 
Эта кривая удовлетворяет известным решениям с погрешностью менее 4%. Из 

выражения (2) можно получить формулу для определения максимального прогиба пластинки 
через основную частоту колебаний и, наоборот, основной частоты колебаний – через 
максимальный прогиб. 

Выводы. 
1. В статье показана взаимосвязь максимального прогиба и основной частоты 

колебаний пластинок с различными граничными условиями, построена соответствующая 
графическая зависимость. 

2. При построении графической зависимости 2
0ω w  – r r  кривые для пластинок 

одинаковой формы с шарнирным опиранием и жестким защемлением по контуру 
практически совпадают (отклонения этих зависимостей от кривой (2) не превышают 4%). 
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3. Формула (2) позволяет находить максимальный прогиб пластинки с произвольной 
комбинацией условий шарнирного опирания и жесткого защемления по контуру через 
основную частоту колебаний и, наоборот, основную частоту колебаний – через 
максимальный прогиб. Эта возможность будет весьма полезной при диагностике и контроле 
качества строительных конструкций в виде пластинок сложной формы и сложными 
граничными условиями.  

 
Таблица 2 – Сопоставление кривых 2

0ω w   – r r  для пластинок с шарнирным 
опиранием и жестким защемлением по контуру 

 
Форма 

пластинки 

Отношение  
конформных  
радиусов r r  

Шарнирное опирание Жесткое защемление
1000 0w  ω 2

0ω w ·10–3 1000 0w  ω  2
0ω w ·10–3 

1 2 3 4 5 6 7 8
Пластинки в форме правильных фигур

6–угольник 0,9762 4,889 18,384 1,652 1,478 33,089 1,618
4–угольник 0,9139 4,082 19,597 1,568 1,267 35,621 1,608
3–угольник 0,7748 3,101 22,741 1,604 0,900 42,566 1,631

Пластинки в форме равнобедренных треугольников
α=80˚ 0,5308 1,617 31,068 1,561 0,428 58,781 1,621
α=70˚ 0,7270 2,801 24,007 1,614 0,793 45,422 1,637
α=60˚ 0,7748 3,101 22,741 1,604 0,900 43,026 1,631
α=50˚ 0,7411 2,892 23,621 1,614 0,824 44,691 1,636
α=40˚ 0,6556 2,337 26,151 1,598 0,647 49,478 1,634

Пластинки в форме прямоугольных треугольников
α=45˚ 0,7034 2,647 24,678 1,612 0,743 46,691 1,639
α=40˚ 0,6970 2,605 24,866 1,611 0,730 47,047 1,639
α=35˚ 0,6771 2,475 25,477 1,605 0,689 48,184 1,637
α=30˚ 0,6436 2,261 26,548 1,594 0,624 50,229 1,631
α=25˚ 0,5941 1,964 28,334 1,577 0,534 53,608 1,617
α=20˚ 0,5284 1,604 31,184 1,560 0,424 59,001 1,622

Пластинки в форме ромбов
α=90˚ 0,9139 4,082 19,597 1,568 1,267 37,078 1,608
α=80˚ 0,9036 3,989 19,808 1,565 1,237 37,475 1,609
α=70˚ 0,8724 3,734 20,465 1,564 1,147 38,720 1,612
α=60˚ 0,8199 3,376 21,644 1,582 1,009 40,951 1,622
α=50˚ 0,7457 2,921 23,498 1,613 0,834 44,459 1,636
α=40˚ 0,6487 2,293 26,378 1,595 0,634 49,908 1,633
α=30˚ 0,5277 1,600 31,219 1,559 0,423 59,067 1,623

Примечание – В таблице приведены результаты, полученные в работе [14]. 
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A.V. KOROBKO, A.A. СHERNYAEV, S.V. SHLYAKHOV, V.O. TYURIN 

 
THE RELATIONSHIP OF THE MAXIMUM DEFLECTION  
AND FUNDAMENTAL FREQUENCY OF OSCILLATIONS  

OF THE PLATES 
 

Abstract. This article examines the question of the relationship between the maximum deflection and 
fundamental frequency of oscillations of the plates. Appears to be graphical and analytical relationships between the 
above parameters for plates with different boundary conditions (hinge support throughout the system and hard 
pinching). Displays the approximating function of the maximum deflection to the square of the fundamental frequency 
of oscillation of the plates depending on the relations between the inner and outer conformal radius, allowing us to 
obtain the elementary formula for determining the values of the maximum deflection at the fundamental frequency of 
oscillation and vice versa – the main frequency of the fluctuations in the value of the maximum deflection. 

Keywords: elastic plate in the shape of polygons circumscribed around a circle, hard pinched, a ball bearing, 
the maximum deflection of the plates, the main frequency of oscillation, the ratio of the conformal radius. 
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МАШИНОСТРОИТЕЛЬНЫЕ ТЕХНОЛОГИИ 
И ОБОРУДОВАНИЕ 

УДК 621.914 
 

Р.В. АНИСИМОВ, И.В. ОВСЯНИКОВА, А.С. ТАРАПАНОВ 
 

ПОВЫШЕНИЕ ТОЧНОСТИ ОБРАБОТКИ ПЕРИОДИЧЕСКИХ 
ПРОФИЛЕЙ ПРИ НЕЙРОСЕТЕВОМ УПРАВЛЕНИИ 

 
Аннотация. В статье представлены результаты исследования сил резания при обработке 

неэвольвентных периодических профилей. Представлен анализ возможностей нейросетевого управления 
цепями подач станков с ЧПУ для выравнивания нагрузки. Установлено, что нейросетевое управление, 
отвечающее за качество формообразования периодических профилей, позволяет повысить их точность. 

Ключевые слова: искусственные нейронные сети, системы управления, периодические профили, 
качество изделий. 

 
 Введение. 

На сегодняшний день необходима обобщенная концепция управления, включающая в 
себя более высокий уровень принятия решений и обучения в машиностроении. 

Наиболее перспективным направлением в развитии управления технологическими 
процессами являются искусственные нейронные сети с их массовым параллелизмом и 
способностью к обучению, которые моделируют действие периодических нагрузок на 
технологическую систему [1 – 4]. 

В современном машиностроении широко используются изделия, содержащие 
сложные периодические неэвольвентные профили, которые применяются для передачи 
крутящего момента во множестве механизмов машин и аппаратов.  

Основная часть. 
Варианты формы профилей широко варьируются. Помимо традиционного 

эвольвентного (зубчатые колёса с эвольвентными зубьями, соединения с помощью 
эвольвентных шлицев) широко применяются треугольные, циклоидные, трапецеидальные и 
т.д. (рисунок 1). 

Процесс механической обработки сложных периодических профилей отличается 
большим разнообразием методов обработки, высокими требованиями к качеству 
обработанной поверхности, к кинематической точности и погрешностям профиля на этапе 
предварительного формообразования. 

В рамках применяемой модели – возможность управления формообразованием в 
соответствии с задаваемыми целями и ограничениями. К последним могут быть отнесены 
качественные показатели номинальной поверхности, режимы резания, параметры установки 
инструмента, время обработки и себестоимость [4, 5]. 

Анализ эксплуатационных возможностей оборудования по производительности и 
качеству нарезаемых колес связан, в первую очередь, с определением максимальной 
амплитуды сил резания и их изменением за период оборота инструмента. 

Зная силы резания можно определить мощность станка для обработки заготовки, 
необходимую жесткость отдельных узлов, допустимую жесткость детали и применяемого 
приспособления. Важную роль играет определение сил резания для расчета конструктивных 
параметров инструментов червячного типа. При изучении процессов, происходящих при 
резании металлов, основной задачей является определение степени влияния различных 
факторов на изменение сил резания в процессе формообразования деталей с периодическими 
профилями. [4, 5, 6]. 
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информацию в реальном масштабе времени. Это – задача структурного синтеза 
динамических систем с нейросетями, обучаемыми в темпе поступления данных измерения. 

Заключение. 
Развитие конструкций современных зубообрабатывающих станков идет в 

направлении повышения точности обработки за счет повышения качества исполнения и 
монтажа элементов кинематических цепей, определяющих точностные параметры 
обработки, а также шпинделей стола и инструмента на высокоточных подшипниках качения 
[5 – 7, 9]. 

Структурный синтез нейросетевых систем управления базируется на использовании 
конечного числа типовых динамических структур с многослойными нейронными сетями, 
дополняемых в каждом конкретном случае необходимыми каналами измерения и 
оценивания для вычисления переменных, используемых, в свою очередь, в алгоритмах 
обучения многослойных нейросетей. 

Электросхема моделей с ЧПУ намного сложнее, чем обычных. Она представляет 
полностью цифровую систему, которая подходит для сложных задач обработки и 
демонстрирует высокий уровень динамики и точности. Используемое системное 
программное обеспечение дает возможность оптимальной адаптации к станку и к задаче 
обработки. На первый план выходит возможность управления точностью деления и биения 
профилей при формообразовании периодических профилей, позволяющего значительно 
сгладить волнообразное изменение нагрузки на технологическую систему. Модульный 
принцип позволяет оснастить целый ряд станков различного типа.  

Эффективное выравнивание нагрузки при формировании периодических профилей 
дает возможность повысить равномерность нагрузки на технологическую систему и, в 
конечном счете, повысить точность обработки периодических профилей, а, следовательно, и 
качества зацеплений, связанное с уменьшением проблем эксплуатации и долговечностью. 
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INCREASE OF PRECISION OF PROCESSING OF PERIODIC PROFILES 
UNDER THE MANAGEMENT OF A NEURAL NETWORK 

 
Abstract. The article presents the results of the investigation of cutting forces in the processing of non–

involute periodic profiles. The analysis of the possibilities of neural network control of CNC feeding chains for load 
balancing is presented. It is established that the neural network control, which is responsible for the quality of the 
shaping of periodic profiles, allows increasing their accuracy. 
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УДК 629.12.03–714.001.24 
 

А.Р. АБЛАЕВ, Р.Р. АБЛАЕВ 
 

МЕТОДИКА РАСЧЕТА ТЕПЛООТДАЧИ И ГИДРАВЛИЧЕСКОГО 
СОПРОТИВЛЕНИЯ В ТРУБНОМ ПОЛОСТИ СУДОВЫХ 

ОХЛАДИТЕЛЕЙ 
 
Аннотация. Приводится алгоритм определения коэффициента теплоотдачи и гидравлического 

сопротивления в трубном пространстве для судовых охладителей масла и воды в компьютерно–
интегрированной системе 

Ключевые слова: теплообменный аппарат, теплоотдача, гидравлическое сопротивление. 
 
Введение 
Расчет коэффициентов теплоотдачи   является обязательным элементом структур 

расчета коэффициента теплопередачи в теплообменном аппарате. Расчет   специфичен 
практически для каждого сочетания признаков: процесса теплообмена, формы 
теплопередаточного элемента, типа теплопередающей поверхности, пространственного 
расположения аппарата. Каждый из этих признаков, в особенности второй и третий, имеет 
большое число состояний [1–3]. 

В технической литературе имеется множество данных по коэффициентам 
теплоотдачи, большей степенью разрозненных, не удовлетворяющих условиям 
совместимости [4–9]. 

Цель и задачи исследования 
Систематизировать данные по теплогидродинамическому расчету трубного 

пространства судовых кожухотрубчатых охладителей масла и воды и представить 
алгоритмические модели для компьютерно–интегрированного способа расчета. 

Основной раздел 
Во многих судовых кожухотрубчатых охладителях масла и воды [10] вход жидкости в 

трубу совпадает с началом теплообменного участка. В таких случаях из–за небольшой длины 
труб течение не успевает стабилизироваться, т.е. процесс теплообмена протекает в 
начальном гидродинамическом участке при одновременном развитии скоростных и 
температурных полей. 

Если при стабилизированном течении в круглой трубе  dxPefNux /1 , то в 
гидродинамическом начальном участке 

 dxfNu x / Pr, Re,  
(1)

и теплоотдача выше, чем при стабилизированном течении, что объясняется более высокими 
значениями скорости вблизи стенки и наличием радиальных составляющих скорости. 

Расчет для значений Pr от 0,1 до 1000 в круглой трубе вблизи от входа дает 
следующее уравнение для среднего теплообмена: 

.Pr
Re

1
664,0 33,0

5,0









d

l
Nu  (2) 

Результаты расчета теплоотдачи в начальном гидродинамическом участке круглой 
трубы с точностью 5% можно описать уравнением [1] 
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где  стNu  – среднее число Нуссельта на участке от 0x  до lx   при стабилизированном 
течении.  

Зависимость ((3) справедлива при значениях 1,0/Re 1  dl . Она хорошо согласуется 
с экспериментальными данными, но не учитывает влияния изменения физических свойств 
жидкости с температурой. 
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Влияние переменности физических свойств учитывается введением аналогичного 
параметра, как и в случае стабилизированного течения. 

Детальное исследование теплообмена в начальном участке трубы при constqc   
приближенным методом теории пограничного слоя дано в [1]. Получено, что случае 1  
местное число Нуссельта равно 

.
1

4
8

3
1

d

x

Pe

d
Nu x

x







 
(4) 

Для малых значений параметра dx /Re 1  , т.е. вблизи входа в трубу, где толщина 
пограничного слоя невелика, найдено выражение 
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Для всей области начального гидродинамического участка рекомендуется 
соотношение 

,
Re

1
85,21

Re

1
35,0

42,06/1

ст







 










d

x

d

x

Nu

Nu
e x  (6) 

где  стNu  – число Нуссельта для случая стабилизированного течения при constqc  .  

Уравнение ((6) описывает результаты расчета в пределах 064,0/Re10 14   dx  и 

1000Pr7,0   с точностью около 6%. При 064,0/Re 1  dx  профиль скорости становится 

параболическим и  NuNu x . Уравнение ((6) неплохо согласуется с опытными данными в 
случае постоянных физических свойств теплоносителя. 

Для расчета теплообмена в случае переменных физических свойств (прежде всего 
вязкости) с изменением температуры предлагается зависимость 
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где  e  определяется по уравнению ((6). 
Уравнение ((7) охватывает всю протяженность термического начального участка, 

включая и область начального гидродинамического участка, где происходит формирование 
профиля скорости. 

Теплоотдача при ламинарном режиме. 
При ламинарном течении перенос теплоты от одного слоя жидкости к другому в 

направлении нормали к стенке осуществляется путем теплопроводности. В то же время 
каждый слой имеет в общем случае различную скорость продольного движения. Поэтому 
наряду с поперечным переносом теплоты путем теплопроводности происходит также 
конвективный перенос теплоты в продольном направлении. Вследствие этого теплообмен 
при ламинарном режиме течения зависит от гидродинамической картины движения. 

Рассмотрим развитие процесса теплообмена вдоль трубы. Пусть во входном сечении 
температура жидкости постоянна и по величине отличается от температуры стенки трубы. 
По мере движения потока между жидкостью и стенкой происходит процесс теплообмена и 
температура жидкости постепенно изменяется. Вначале вблизи от входного сечения 
изменение температуры происходит лишь в тонком слое около поверхности. Затем по мере 
удаления от входного сечения все большая часть потока вовлекается в процесс теплообмена. 
Таким образом, развитие процесса теплообмена внутри труб вначале происходи качественно. 
Около поверхности трубы образуется тепловой пограничный слой, толщина которого 
постепенно увеличивается в направлении движения потока. На некотором расстоянии от 
входа трубы н.тl  тепловые пограничные слои смыкаются, и в процессе теплообмена 

участвует далее весь поток жидкости. Расстояние н.тl  может быть приближенно оценено по 

зависимости .PrRe05,0н.т dl   
Обычно на практике ламинарный режим встречается при течении достаточно вязких 

теплоносителей, таких как различные масла, применяемые в судостроении, для которых 
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значения Pr, для рабочих режимов находятся в пределах от 0,5 до 2500. В этих условиях 
длина теплового начального участка стабилизации н.тl  оказывается достаточно большой. 

Значительное влияние на интенсивность теплоотдачи может оказывать зависимость 
физических свойств жидкости (в первую очередь вязкости) от температуры. Изменение 
температуры по сечению трубы приводит к изменению вязкости, причем чем сильнее 
перепады температур, тем сильнее меняются вязкость и другие физические параметры 
(теплопроводность, теплоемкость) по сечению трубы. Изменение вязкости приводит к 
изменению профиля поля скорости, что в свою очередь отражается на интенсивности 
теплообмена. На практике обычно скорость и температура на входе в трубу имеют профили, 
близкие к равномерным. Для этих условий расчет среднего коэффициента теплоотдачи при 
ламинарном режиме течения жидкости в трубах при 10/ dl  и 10Reж   может проводиться 
по формуле 
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Индексы «ж» и «с» означают, что физические свойства выбираются по средней 
температуре жидкости и стенки соответственно. 

Множитель 
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  учитывает зависимость физических свойств (в основном 

вязкости) от температуры и влияние направления теплового потока. Соотношение ((8) 

справедливо для значений 10Pr
Pr06,0

с

ж  . 

Соотношение ((8) правомерно при значениях .15PrRe 5/6
жж 

l

d
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При меньших значениях этой величины, т.е. для труб весьма большой длины: 

,PrRe067,0/ 5/6
жжddl   

(9)
величина жdNu  становиться постоянной, что отвечает условиям стабилизации интенсивности 
теплоотдачи. При выполнении этих условий вместо соотношения ((8) для определения 
среднего коэффициента теплоотдачи может быть рекомендовано приближенное 
соотношение 

.Pr
Pr4

25,0

с

ж
ж 





dNu  (10) 

Теплоотдача при турбулентном движении в круглых трубах при установившемся 
течении 

При турбулентном режиме движения перенос теплоты внутри жидкости 
осуществляется в основном путем перемешивания. При этом процесс перемешивания 
протекает настолько интенсивно, что по сечению ядра потока температура жидкости 
практически постоянна. Резкое изменение температуры наблюдается лишь внутри тонкого 
слоя у поверхности. 

В [1] проведен аналитический расчет стабилизированной теплоотдачи. Расчетами 
охвачен интервал чисел Re от 104 до 5106 и Pr от 0 до 2000. Результаты, полученные при 
Pr>0,5, обобщены зависимостью 

 
,

1Pr8
17,12

PrRe8
1

3/2
1 






k
Nu  

(11) 

где  Re/90011 k ;   264,1Relg82,1  . 
Среднее отклонение экспериментальных значений Nu от рассчитанных по ((11) 

составляет (4–5)% в интервалах 63 105Re104   и 5105Pr5,0  . 
На практике для расчета теплоотдачи часто пользуются формулой [2] 
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,
Pr

Pr
PrRe021,0

25,0

c

ж43,08,0
lNu 








  (12) 

где  l  – коэффициент, учитывающий изменение среднего коэффициента теплоотдачи по 
длине трубы. 

Формула ((12) получена на основе обобщения различных опытных данных в 
интервалах чисел Re от 104 до 5106 и Pr от 0,6 до 2500. за определяющую температуру здесь 
принята средняя температура жидкости, а за определяющий размер – диаметр трубы. 

Коэффициент 1l , если 50/ dl . При 50/ dl  необходимо учитывать влияние 
теплового начального участка. 

На основании анализа расчетов коэффициентов теплоотдачи в трубной полости 
разработана алгоритмическая модель расчета для судовых охладителей, представленная на 
рисунке 1. 

Расчет гидравлического сопротивления в трубной полости 
Анализ режимов работы охладителей масла и воды показал, что режимная 

характеристика течения охлаждающей жидкости в трубной полости находится в пределах 
2000Re  . Поэтому из анализа расчетных формул для определения коэффициентов 

сопротивления трения принято уравнение 

Re103,70173,0 6   , (13)
для режимов 33 104Re102  . 

Для режимов 3104Re   использована формула [11] 

 264,1Relg82,1

1


 . 

(14) 

Потеря давления на преодоление местных сопротивлений месР , которые встречаются 
по пути движения потока воды в аппарате, связаны с ударами, расширениями и сужениями 
потока при входе и выходе его в патрубках 

,
2

2

1

w
Р

n

i
iмес

 







 



 
(15) 

где  
2

2w
 – скоростной, динамический напор, Па;  




n

i
i

1

  – сумма коэффициентов местных сопротивлений, зависящая исключительно от 

конструкции охладителя и его элементов. Значения коэффициентов местных сопротивлений 
приведены в таблице 1. 

При входе потока в прямую трубу постоянного поперечного сечения (рисунок 2) 
явление определяется двумя параметрами: относительной толщиной в1 / d  стенки входной 
кромки трубы и относительным расстоянием в/ db  от обреза трубы до стенки, в которую она 
заделана. 

Значения местных сопротивлений при входе охлаждающей жидкости в трубную 
полость приняты в соответствии с [11] рисунок 3 и аппроксимированы уравнениями вида 

в/ dcea    (таблица 2). 
 
Таблица 1 – Коэффициенты местных сопротивлений 

Наименование Значение
Вход и выход в патрубках 1,5 
Поворот на 180 при переходе из одного пучка трубок в другой 2,5 
Выход из трубной полости 1,0 



№ 2 (328) 2

Р

Таб
жидкости 

 
При

определяе

 

2018 _____

Рисунок 1 – А

блица 2 – У
в трубную

в/ db  0

а  0,
c  2

и коничес
ется из рису





Фу

__________

Алгоритм ра

Рисунок 2

Уравнения 
ю полость 

,002 0,00

5415 0,57
,215 3,88

кой развал
унка 5 и ап

 /4,1208

145085





R



ундаментал

__________

счета коэфф

2 – Схема пот

для расчет

05 0,01

731 0,6129
856 5,3724

льцовке (р
ппроксимир
 
 28,7

/5
3

в

6
в





d

dR

льные и пр

__________

 
фициента т

 

 
тока при вхо

 
та местных

0,02

9 0,6554
4 6,9608

рисунок 4)
рован уравн


 /839

/79983
2

в



dR

dR

икладные п

__________

еплоотдачи

оде в трубну

х сопротивл

0,05

0,7219 0
9,3656 1

), коэффиц
нением 


3924,7

1578
2

5
в





R

d

проблемы т

__________

 

в трубном п

 

ю полость 

лений при 

0,1 0

0,7978 0,8
1,207 12,

циент мест

 
 5,0/

/7

в

4
в





dR

dR

техники и т

__________

пространст

входе охл

0,2 0,3

809 0936
863 14,00

тного сопр


. 

технологии

_______ 19

ве 

аждающей

66 
05

ротивления

(16)

и 

й 

я 



троительны

___________

3 – Изменени

– Коническая
участка

иболее зна
рез плавны
о коллекто
иент сопрот
ромка). 
и автомати
с наружн
ется графи
ведены в т
авнительно
ры с прямы
иент сопро
льной длин
вует свое о
т минималь

 
к 6 – Автома
швом с кони
й решетке с 

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

0,004



ые технолог

__________

ие коэффици

я развальцов
а трубы 

ачительное
ый коллекто
ора с от
тивления 

ической св
ной сторо
иком предс
аблице 3. 
о малое с
ыми образу
отивления т
ны в/ dl  су
оптимальн
ьное значе

атическая с
ической раззе
наружной ст

0,012

гии и обору

___________

иента местн

вка входного 

е уменьше
ор, очерчен
тносительн
  снижает

варке плот
оны (рису
ставленным

сопротивле
ующими, оф
таких колл
ужающегос
ое значени
ние. 

варка 
енковкой  
тороны 

0,02
в1 / d

удование 

___________

 
ного сопроти

 

Рисун
сопроти

 
ение сопро
нный по ду
ной велич
тся до 0,04–

тным швом
унок 6), 
м на рисун

ение созд
формленны
лекторов за
ся участка
ие  , при 

Рисуно
сопротивл

0

0,1

0,2

0,3

0,4

0,5

0,6

0

0,028 0,
в

___________

ивления при 

нок 5 – Изме
ивления при 

у

отивления 
уге кривой 
чиной рад
–0,05 вмес

м с кониче
коэффици
нке 7 и а

дается такж
ые в виде у
ависит как
. Каждой д
котором к

ок 7 – Измен
ения при авт
раззенковк

50

036 0,044

__________

входе поток

енение коэфф
конической 
участка тру

имеет ме
(рисунок 4
диуса закр
сто  =1,0 

еской разз
ент местн
ппроксими

же при в
усеченного
к от угла с
длине кони
коэффициен

нение коэффи
томатическ
кой в трубно

100

_______ № 2

 

ка в трубную

фициента ме
развальцовк
убы 

есто в слу
4). Так, нап
ругления 
при в/ dR

зенковкой 
ного сопр
ирован ура

входе пот
о конуса (р
сужения 
ического к
нт сопроти

ициента мес
кой сварке с к
ой решетке 

150

b/dв=0

b/dв=0,002

b/dв=0,005

b/dв=0,01

b/dв=0,02

b/dв=0,05

b/dв=0,1

b/dв=0,2

b/dв=0,3

b/dв=0,5

2 (328) 2018

ю полость 

естного 
ке входного 

учае входа
ример, для

в/ dR =0,2
= в1 / d =0

в трубной
ротивления
авнениями,

тока через
рисунок 6).
 , так и от
коллектора
ивления 

стного 
конической 

200

l/dв=0,025

l/dв=0,05

l/dв=0,075

l/dв=0,1

l/dв=0,15

l/dв=0,6



8 

а 
я 
2 
0 

й 
я 
, 

з 
. 
т 
а 
 



Фундаментальные и прикладные проблемы техники и технологии 

№ 2 (328) 2018 _________________________________________________________________ 21 

Таблица 3 – Уравнения для расчета местных сопротивлений при входе охлаждающей 
жидкости в трубную полость 

в/ dl    

0,025 
5,0

180
2058,0

180
1374,0

180
0329,0

180
0032,0

234







 







 







 







  

 

0,05 
5,0

180
3792,0

180
2101,0

180
0256,0

180
001,0

234







 







 







 







 




 

0,075 
5,0

180
5789,0

180
39,0

180
0831,0

180
0056,0

234







 







 







 







  

 

0,1 
5,0

180
7188,0

180
5321,0

180
1362,0

180
0126,0

234







 







 







 







  
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180
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180
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180
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180
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234







 







 







 







  

 

0,6 
49,0

180
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180
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2345
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



 







 







 







 




 
Остальные местные сопротивления принимаются на основании многолетних 

испытаний судовых охладителей масла и воды [3]. 
Заключение 
Для обеспечения высокого качества проектирования теплообменных аппаратов 

необходимо повысить точность теплогидродинамического расчета, чтобы он наиболее полно 
отражал конструктивные характеристики судовых охладителей масла и воды. Для этого был 
выполнен обзор и анализ уравнений для расчета коэффициента теплоотдачи и 
гидравлических сопротивлений по трубной полости с целью оценки возможности 
применения последних исследовательских достижений в алгоритмических модулях. 
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METHOD OF CALCULATION OF HEAT EMISSION AND HYDRAULIC 
RESISTANCE IN PIPE CAVITY OF SHIP COOLERS 

 
Abstract. An algorithm over of determination of coefficient of heat emission and hydraulic resistance is 

brought in pipe space for the ship coolers of butter and water in the computer–computer–integrated system. 
Keywords: heat–exchange vehicle, heat emission, hydraulic resistance. 
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УДК 621.7, 681.3 
 

В.Ю. ЛАВРИНЕНКО, А.В. КУРОВ, О.В. ЯКОВЛЕВА 
 

ИССЛЕДОВАНИЕ ПРОЦЕССА УДАРА ПРИ ОСАДКЕ ЗАГОТОВОК  
С ПОМОЩЬЮ ПРОГРАММЫ АНАЛИЗА ДВИЖЕНИЯ MOTION 

ANALYZE®BMSTU 
 

Аннотация. В статье представлены результаты экспериментальных исследований процесса 
ударного деформирования при осадке цилиндрических заготовок стандартной бабой и специальной бабой 
копра с наполнителем в виде стальных шариков. Проведенный анализ процесса осадки заготовок с помощью 
разработанной программы анализа движения Motion Analyze®BMSTU позволил установить, что при 
использовании бабы копра с наполнителем имеет место увеличение продолжительности удара (в 1,3 раза), 
увеличение относительной деформации заготовок (в 1,3 раза) и уменьшение силы деформирования (в 1,2 раза) 
по сравнению со стандартной бабой копра.  

Ключевые слова: ударное деформирование, осадка, баба молота с наполнителем, анализ движения 
объектов. 

 
Введение 
Программное обеспечение для анализа движения объектов на видео или 

последовательности изображений является важным средством для обработки результатов 
научных и инженерных исследований. Оно позволяет автоматически отслеживать объект и 
получать его кинематические характеристики. 

В настоящее время для анализа видео и изображений широко применяют зарубежное 
программное обеспечение TEMA Motion («Image Systems», Швеция), ProAnalyst Xcitex 
(«Xcitex Inc.», США) и другие. Данное программное обеспечение предназначено для анализа 
движущихся объектов на видео или последовательности изображений и позволяет вводить 
изображения или видео в программу, проводить автоматическое отслеживание и анализ с 
последующим получением таблиц и двух– и трехмерных графиков. Программное 
обеспечение позволяет получить следующие данные об исследуемом объекте: перемещение, 
скорость, ускорение, форма, размеры и другие параметры. Недостатком данных систем 
анализа движения является их высокая стоимость и малая доступность для учебных целей и 
проведения научных исследований. 

На кафедре «Программное обеспечение ЭВМ и информационные технологии» МГТУ 
им. Н.Э. Баумана была разработана программы Motion Analyze®BMSTU, которая позволяет 
проводить анализ кинематики и динамики движущегося объекта при обработке видеофайла в 
различных форматах (avi, mp4, mpeg, asf, mkv, rm, wmv). Задача сопровождения объекта в 
данной программе решена с помощью детерминистского метода сопровождения особых 
точек и вычислении оптического потока согласно алгоритму Лукаса–Канаде. При этом 
положение особых точек на первом кадре пользователь задает вручную или происходит 
автоматический поиск особых точек с помощью углового детектора Ши–Томаси из 
библиотеки OpenCV. 

Главное окно пользовательского интерфейса программы Motion Analyze®BMSTU 
(рисунок 1) содержит панель меню, панель быстрого доступа, навигационную панель, 
рабочее пространство для размещения видеозаписей и диаграмм. Через панель меню 
осуществляется загрузка видеофайлов, сохранение результатов работы программы, 
перемотка активной видеозаписи и слежение за точками, добавление и удаление точек 
слежения, добавление диаграмм, отражающих траекторию, скорость и ускорение точек, 
настройка скорости воспроизведения видеозаписи и масштабирование. Навигационная 
панель позволяет удалять, скрывать и отображать видеозаписи и диаграммы на рабочем 
пространстве, а также выбирать активную видеозапись. Программа Motion Analyze®BMSTU 
позволяет определять и сохранять в виде таблиц (формат txt) или графиков (формат jpg) 
зависимости перемещения, скорости и ускорения объекта от времени. 
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– сила деформирования снизилась примерно в 1,2 раза при применении специальной 
бабы копра по сравнению с осадкой стандартной бабой. 

Данные результаты хорошо согласуются с ранее полученными значениями 
относительной деформации и сил деформирования при осадке заготовок стандартной и 
специальной бабой копра. 

2. Высокая сходимость экспериментальных данных и результатов анализа процесса 
удара в программе анализа движения Motion Analyze®BMSTU позволяет рекомендовать 
программу для анализа движения объектов и определения их кинематических и 
динамических характеристик при проведении различных научных и прикладных 
исследований. 
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V.Yu. LAVRINENKO, A.V. KUROV, O.V. YAKOVLEVA 

 
RESEARCH OF IMPACT PROCESS DURING UPSETTING OF BLANKS  

BY USING OF SOFTWARE MOTION ANALYZE®BMSTU 
 

Abstract. Results of experimental research of upsetting of cylinder blanks on hammer with standard ram and 
ram with fillets are presented. The analyze of experimental data by using of developed software Motion 
Analyze®BMSTU allows to obtain the increasing of impact time (up to 1,3 times), increasing of deformation of blanks 
(up to 1,3 times) and decreasing of impact force (up to 1,2 times) by using of ram with fillets is obtained.  

Keywords: impact deformation, upsetting, hammer with fillets, analyze of object motion. 
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УДК 621.82 
 

Е.Н. КОРНЕЕВА, В.А. ГОРДОН, Ю.С. КОРНЕЕВ 
 

ЗАДАЧА ПРОФИЛИРОВАНИЯ РЕГУЛИРУЮЩЕГО ДИСКА 
ПУСКОЗАЩИТНОЙ МУФТЫ 

 
Аннотация: В работе рассмотрено профилирование рабочей поверхности регулирующего диска 

пускозащитной муфты, которое позволяет получить требуемый закон движения машины. 
Ключевые слова: технологическая машина, муфта, функционал, профилирование. 

 
Пускозащитные муфты [1]  нашли широкое применение в машиностроении благодаря 

простоте и надежности работы, а правильный выбор профиля регулирующего диска 
позволяет получить требуемый закон движения рабочего органа технологической машины. 

Форму рабочей поверхности регулирующего диска целесообразно выбирать из 
условий оптимального закона разгона машины, который должен задаваться из условия 
наименьших динамических нагрузок, а также заданного времени включения муфты.  

Участок рабочей поверхности регулирующего диска, соответствующий 
неподвижному валу рабочей машины, не может быть выбран из соображений регулирования 
параметров разгона. На этом этапе важно обеспечить требуемое время безнагрузочного 
разгона электродвигателя, которое обычно определяют по угловой скорости двигателя. 
Целесообразно включать муфту (вращение ведомой части) на падающей ветви 
характеристики двигателя. В таком случае часть параметров должна находиться из условия, 
что кривая проходит через точки (х=хвкл; у = увкл) и (х = R0; у = 0). Остальные параметры 
профиля находятся так, чтобы действительный закон изменения угловой скорости ротора 
электродвигателя был близок к заданному. Оптимальные законы разгона приведены на 
рисунке 1.  
 

а б 
 

Рисунок 1 – Закон разгона ротора электродвигателя:  
а) угловая скорость изменяется по прямой; б) угловая скорость изменяется по синусоидальному закону 

 
Сначала рассмотрим случай, когда требуемая скорость меняется в общем случае по 

закону: 
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Профиль регулирующего диска необходимо выбрать таким образом, чтобы 
действительная скорость разгона ротора электродвигателя была близка к заданной. Для 
решения этой задачи воспользуемся теорией квадратичного приближения функции. Как 
известно из [2], для этого необходимо найти минимум следующего функционала: 

  .
0

2
1 dt

вклt

зад                                                          (1) 

При этом  ,tзадзад   а угловая скорость ω1 при безнагрузочном разгоне электродвигателя (

I0 tt  ) находится из уравнения: 

    ,1min121
12 DxycFfkk

dt

d
ExI An 


                                  (2) 

где  х и у – координаты теоретического профиля кривой. 
Минимум функционала (1) можно найти путем составления и решения уравнений 

Эйлера для вариационной задачи [3]. Поскольку точного решения заданная вариационная 
задача не имеет, то воспользуемся приближенным решением по методу Ритца [3]. В этом 
случае значения функционала (1) надо рассматривать не на произвольных кривых данной 
задачи, а на некоторых линейных комбинациях заданной последовательности координатных 
функций, удовлетворяющей граничным условиям. 

Пусть, например, для профилирования выбрана дуга окружности. Представим 
окружность в параметрическом виде (рисунок 2): 
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где  ψI – наибольшее значение параметра ψ, соответствующее tI. Тогда 
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I t
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Рисунок 2 – Профилирование регулирующего диска 
 

Рассмотрим профилирование регулирующего диска при безнагрузочном разгоне 
электродвигателя в пределах I0 tt  . Уравнения (3) и (4) должны удовлетворять граничным 
условиям, которые имеют вид: х (0) = R0;  
y (0) = 0; y (tI) = yI; R0 = b +0; b = R0; 0 = a − R;  a = R;  

;sin
I

I
0 t

t
RRx


  .cos

I

I

t

t
RRy


  

Угол 
I

I

t

t
 мал. Разложим синус и косинус в ряды и оставим первые члены:  

;
I

I

tt






y

M
x

a

O'

R

R
0

O



b



Фундаментальные и прикладные проблемы техники и технологии 

№ 2 (328) 2018 _________________________________________________________________ 31 

;sin
I

I

I

I

t

t

t

t 



 ;5,01cos

2

I

I

I

I







 



t

t

t

t
 

;
I

I
0 t

t
RRx


  .5,05,0
2

I

I
2

I

I







 








 


t

t
RR

t

t
RRy  

Формула (2) примет вид: 
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Это неоднородное линейное уравнение, решаемое следующим образом: 
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поскольку С = const, можно взять любое постоянное число. Принимаем  

.ln 3
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Тогда уравнение принимает вид: .lnln 3
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Для нахождения решения уравнения (5) используем метод вариации произвольной 
постоянной [3, 4]: 
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 В окончательном виде решение принимает вид: 
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При t = tI шар перемещается по оси y на величину yI = h. Величина yI известна из 
предыдущего расчета: 
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Раскрывая уравнение (7), получим выражение для искомого радиуса окружности: 
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Величина А1 определяется в зависимости от функции зад . Так, если вклвклзад tt
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При уточненном расчете следует величину R найти из следующей системы уравнений: 
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Систему уравнений (9) можно решить только приближенно с использованием 
компьютерных программ. 
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Abstract:  Is examined shaping the regulated disk of the start–up protectional cluch, which makes it possible 
to obtain the required law of the motion of the machine. 
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Г.В. БАРСУКОВ, О.Г. КОЖУС, А.Ю. ВИНОКУРОВ 
 

ИССЛЕДОВАНИЕ АБРАЗИВНОЙ СПОСОБНОСТИ ИСКУССТВЕННЫХ  
И ПРИРОДНЫХ АБРАЗИВОВ, ОБЕСПЕЧИВАЮЩИХ ПРОИЗВОДИТЕЛЬНОСТЬ 

ГИДРОАБРАЗИВНОГО РЕЗАНИЯ 
 

Аннотация. В работе проведено сравнение физико–механических свойств зерен отвальных шлаков 
цветного производства и гранатового песка по параметру твердость методом царапания. Для оценки 
разработали методику с использованием стандартизированного тестера для определения абразивного 
сопротивления PEI/300/B/2 производства «Ceramic Instruments s.r.l.». По полученным зависимостям проведено 
сравнение абразивной способности гранатового абразива с абразивным материалом из отвальных шлаков 
цветного производства. 

Ключевые слова: гидроабразивное резание, абразив, абразивная смесь, истирание, отвальные шлаки 
цветного производства, гранатовый песок 

 
Введение 
Технологические параметры гидроабразивного резания зависят от характеристик и 

свойств абразивного материала, его строения, прочности, содержания и характера 
примесей[1]. 

На операциях гидрорезки чаще всего используют минеральные абразивы, которые 
можно разделить на две большие группы искусственные и естественные (природные) [2]. 

Физико–механические свойства искусственных абразивов более стабильны, чем у 
естественных, поэтому применение последних ограничено. Естественные абразивы 
применяются в промышленности и изготавливаются из минералов и горных пород. 

К искусственным абразивным материалам относятся: эльбор (кубический нитрид или 
его модификация), карбид бора, карбид кремния, электрокорунд (нормальный, белый, 
хромистый и титанистый), монокорунд. 

Ряд естественных абразивных материалов составляют: гранат, кремень, корунд 
(кристаллическая окись алюминия), алмаз. 

Основной параметр абразивного материала – его твердость, количественно 
оцениваемая по микротвердости и по десятибалльной шкале Мооса (в 10 баллов). Твердость 
материала свыше 7 считается высокой, 5–7 – средней, меньше 5 – низкой. 

Твердость материалов для гидроабразивной резки, их прочность и строение 
объединены общим понятием работоспособности – абразивной работоспособностью, которая 
определяется величиной суммарного съема материала вплоть до полной потери его 
работоспособности. Эта величина во многом зависит от изнашивания и физико–
механических характеристик обрабатываемого материала. 

Влияние абразива на гидроабразивное резание 
При гидроабразивном резании большое значение имеют не только физико–

механические свойства абразивного материала, но и форма абразивных зерен, а также 
состояние их режущих кромок [3]. Основными геометрическими параметрами, 
определяющими режущие способности абразивного зерна, являются форма зерен, число 
вершин (режущих кромок) зерна, углы при вершинах и радиусы скругления вершин. 
Известно, что форма зерна в значительной степени зависит от условий кристаллизации, 
роста кристаллов и их структуры. Многие кристаллы искусственного происхождения не 
имеют правильной геометрической формы. Даже природные абразивные материалы часто не 
являются кристаллами правильной формы. Кроме того, кристаллы таких распространенных 
абразивных материалов, как электрокорунд и карбид кремния, не имеют плоскостей 
спайности. Вследствие этого при их дроблении не обеспечивается получение однородной и 
определенной формы зерен. Абразивные зерна имеют, как правило, неправильную 
геометрическую форму. Часто они представляют собой сопряженные многогранники, у 
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которых выступающие заостренные части различаются как по форме, так и по величине. 
Заостренные части зерен являются режущими элементами, которые при движении 
оказывают скоблящее действие на поверхность обрабатываемого более мягкого материала. 

Встречаются зерна, форма которых подобна октаэдру, тригональному трапецоиду, 
ромбическому тетраэдру, трехгранной призме, шаровидным многогранникам. Некоторые из 
зерен бывают удлиненными, иглообразными, мечевидными, пластинчатыми. Зерна карбида 
кремния зеленого имеют гладкую поверхность граней, больше прямолинейных режущих 
кромок и более сложную и разнообразную их конфигурацию, зерна электрокорунда 
шероховатую поверхность и более простую конфигурацию. Зёрна игольчатые, пластинчатые 
быстро разрушаются, так как имеют недостаточную прочность. Зерна неправильной формы, 
обычно являющиеся соединениями двух и более зерен, также имеют малую прочность и 
быстро разрушаются при работе. Сегодня, самым часто используемым абразивным 
материалом для гидроабразивного резания является гранатовый песок, который имеет массу 
преимуществ по сравнению с другими (бесперебойная подача абразива в сопло установки 
гидроабразивной резки; большая плотность, высокая режущая способность и остроугловая 
форма гранул позволяют добиться оптимального баланса между скоростью резки и высоким 
качеством обрабатываемой поверхности и т.д.) [4].  

Гранатовый песок – является твердым и тяжелым абразивом с удельным весом 4,1 – 
4,3 г/см³., твердость 7,5 ед. по шкале Мооса. Твердость абразивного граната связана с 
кристаллическим строением и обеспечивает высокое сопротивление к разрушению. 
Благодаря этой способности гранатовый абразив является очень устойчивым к разрушению. 
Самым большим недостатком гранатового песка является его дороговизна [5–6].  

Одним из путей повышения эффективности гидроабразивного резания является 
подбор абразива, позволяющего снизить себестоимость процесса [7]. Для таких целей все 
чаще стали использовать абразивные материалы цветной металлургии, например, шлаки 
медного производства, которые являются дешевыми по сравнению с гранатовым песком, [8]. 
Однако за счет относительно небольшой твердости таких материалов (6 ед. по шкале Мооса), 
можно выделить следующие недостатки: низкая производительность и невысокое качество 
резки. 

Существуют методы, позволяющие улучшить физико–механические характеристики 
абразивных материалов из отвальных шлаков цветного производства, что в последствие 
обеспечит необходимые требования по скорости резки и точности обработки. К ним можно 
отнести: дробление в струйной мельнице, нагревание в электропечах до температуры 1100–
1200 С с последующим охлаждением до 20С [9] и др. 

Для того, чтобы применить какой–либо из методов, необходимо сделать оценку 
улучшения абразивной способности таких материалов, которая напрямую зависит от их 
твердости и определяется методом царапания, т.е. способностью одного тела царапаться 
другим более твердым телом. 

Поэтому было проведено сравнение физико–механических свойств зерен отвальных 
шлаков цветного производства и гранатового песка по параметру твердость методом 
царапания.  

Эксперимент 
Для оценки разработали методику с использованием стандартизированного тестера 

для определения абразивного сопротивления PEI/300/B/2 производства «Ceramic Instruments 
s.r.l.» (рисунок 2).  

Фото образцов гранатового песка и абразивных материалов из отвальных шлаков 
цветного производства в объективе металлографического микроскопа АЛЬТАМИ МЕТ 1С 
представлены на рисунке 1. 

Установка состоит из основной несущей плиты, приводимая в движение валом, 
обеспечивающим вращение плиты с заданной угловой скоростью (в соответствии с ГОСТ 
27180–2001[10] – 300 1 об/мин) с заданным эксцентриситетом (в соответствии с ГОСТ 
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Таким образом, параметр твердость по методу царапанья возможно определить по 
оптической плотности. Чем этот показатель выше, тем выше твердость абразива.  

По полученным зависимостям оптической плотности от длинны волны (рисунок 5) 
видно, что гранатовый песок обладает более лучшей абразивной способностью, 
определяемой по методу царапанья в сравнении с абразивным материалом из отвальных 
шлаков цветного производства, примерно на 20%, что соответствует потере 
производительности гидроабразивной резки при использовании шлаков на 20%. Поэтому о 
режущей способности абразива можно судить по показателю твердости, определяемому 
методом царапания с использованием разработанной нами методики. Стабильность 
полученных результатов на каждом участке длинны волны, говорит нам об адекватности 
разработанной методики определения параметра твердость методом царапания. 
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G.V. BARSUKOV, O.G. KOZHUS, A.Yu. VINOKUROV 
 

INVESTIGATION OF ABRASIVE ABILITY OF ARTIFICIAL  
AND NATURAL ABRASIVES PROVIDING THE PRODUCTIVITY  

OF ABRASIVE WATERJET CUTTING 
 

Abstract. The paper compares the physico–mechanical properties of grains of dump slags of color production 
and garnet sand by the hardness parameter using the scratching method. For evaluation, a technique was developed 
using a standardized tester for determination of abrasion resistance PEI / 300 / B / 2 manufactured by Ceramic 
Instruments s.r.l. According to the obtained dependences, the abrasive ability of garnet abrasive with abrasive material 
from color–cured slag was compared. 

Keywords: waterjet cutting, abrasive, abrasive compound, abrasion, dumping slag stained production, garnet 
sand 
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Н.В. КАНАТНИКОВ, Г.А. ХАРЛАМОВ, А.С. ПАШМЕНТОВА, А.А. ГУКОВ  
 

МЕТОДИКА ГИБРИДНОГО ПРОГНОСТИЧЕСКОГО 
МОДЕЛИРОВАНИЯ ЛЕЗВИЙНОЙ ОБРАБОТКИ ЗУБЧАТЫХ КОЛЕС 

СТАНДАРТНОГО И СПЕЦИАЛЬНОГО ПРОФИЛЯ 
 

Аннотация. Данная работа направлена на решение проблемы виртуального проектирования новых 
технологических процессов и прогнозирования результатов обработки зубчатых колес стандартного и 
специального профиля. В статье представлена методика гибридного моделирования процесса обработки 
зубчатых колес стандартного и специального профиля. Полученные результаты позволяют на этапе 
конструкторско–технологической подготовки производства провести проектирование, моделирование, а 
также испытания в виртуальной среде, отражающей реальные условия. Исследование выполнено за счет 
гранта Российского научного фонда (проект № 17–79–10316). 

Ключевые слова: резание металлов, зубчатые колеса, гибридное моделирование, прогностическое 
моделирование, метод конечных элементов, конструкторско–технологическая подготовка производства. 

 
Введение 
В настоящее время на машиностроительных предприятиях в России и мире 

происходит переход к цифровым и интеллектуальным производственным технологиям. 
«Умное» производство успешно развивается применительно к процессам обработки 
лезвийным инструментом. Однако темпы внедрения интеллектуальных технологий в 
производственную практику не удовлетворяют задачам форсированного экономического 
развития страны. Цифровые технологии внедряются в наиболее распространенные и хорошо 
изученные технологические процессы (точение, фрезерование) [7]. Однако в конструкциях 
современных машин и механизмов широко применяются детали, рабочие поверхности 
которых требуют более сложной механической обработки (зубчатые колеса стандартного и 
специального профиля и другие детали, имеющие сложные периодические поверхности). 
Такими деталями комплектуются различного рода моментопередающие механизмы, 
используемые в автомобилях, морских судах, строительных и горных машинах, 
сельскохозяйственной технике, авиации и других отраслях. 

Для внедрения новых достижений в области станкостроения, новых конструкций 
режущего инструмента, новых конструкционных и инструментальных материалов при 
обработке зубчатых колес требуется проведение адекватного количества сложных и 
дорогостоящих лабораторных и производственных исследований [4]. В настоящее время 
замена натурных экспериментов виртуальными невозможна, так как существующие подходы 
к моделированию резания не адаптированы для исследования зубообработки ввиду 
следующих особенностей процесса [12]: 

 конструкция инструмента (режущая часть имеет сложный, а в ряде случаев 
специальный профиль); 

 кинематика процесса резания (происходит непрерывное изменение геометрических 
параметров срезаемого слоя металла и углов резания); 

 стружка (формируется вершинной и боковыми режущими кромками, сходя по 
передней поверхности резца, фрагменты стружки накладываются друг на друга, вызывая в 
инструменте дополнительные нагрузки). 

Проблемой создания передовых технологий цифрового проектирования и 
моделирования производственных процессов занимается множество научных групп во всем 
мире. В настоящее время разработки направлены на исследование сухого и скоростного 
резания, а также резания специальных конструкционных материалов. Отдельное внимание 
уделяется исследованию процессов обработки зубчатых колес [11, 10, 3, 8, 2, 9, 5]. В 
настоящее время достигнуты значительные результаты в прогнозировании фундаментальных 
физических переменных, характеризующих процесс резания (силы резания, температурные 
поля, нагрузки и др.), однако нельзя игнорировать тот факт, что конченой целью 
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моделирования механической обработки являются необходимые производству данные о 
результатах процесса (точности и качества изделия, стойкости инструмента). Без подходов, 
позволяющих осуществить переход от прогнозирования физических переменных к 
прогнозированию практических результатов обработки, невозможно заменить 
дорогостоящие экспериментальные испытания виртуальными. 

Разработанные методы прогнозирования основаны на использовании эмпирического, 
аналитического, численного и гибридного моделирования. Для предсказания практических 
результатов обработки широкие перспективы открывает использование подхода гибридного 
моделирования, соединяющих в себе положительные качества экспериментальных и 
теоретических методов исследований [1]. Однако такой подход до настоящего времени 
полностью не реализован. Это связано с тем, что долгое время, как в России, так и за 
рубежом преимущественно развивалось аналитическое моделирование процессов 
механической обработки, ввиду недостатка вычислительных мощностей и программных 
средств, численному моделированию уделялось значительно меньшее внимание.  

Исследование направлено на решение проблемы виртуального проектирования новых 
технологических процессов и прогнозирования результатов обработки зубчатых колес 
стандартного и специального профиля. Для решения данной проблемы была разработана 
методика гибридного  моделирования процесса обработки зубчатых колес стандартного и 
специального профиля. Полученные результаты позволят на этапе конструкторско–
технологической подготовки производства провести проектирование, моделирование, а 
также испытания в виртуальной среде, отражающей реальные условия. На основании 
результатов численного эксперимента могут быть рассчитаны оптимальные конструкторско–
технологические параметры процесса обработки (режимы резания, углы заточки передней и 
задней поверхности инструмента), необходимые для достижения качественных требований, 
предъявляемых к изделию. 

Методика гибридного прогностического моделирования 
Входные данные для моделирования:  
 профиль обрабатываемого зубчатого колеса,  
 геометрические параметры режущего инструмента, 
 режимы обработки,  
 поведение материала во время деформации и условия контакта между заготовкой и 

инструментом, кинематика процесса резания. 
При моделировании приняты следующие допущения:  
 заготовка неподвижна,  
 все необходимые для формообразования движения совершает инструмент,  
 инструмент абсолютно однородный и абсолютно твердый, 
 поверхность инструмента имеет однородную структуру,  
 обрабатываемый материал имеет геометрически и физически нелинейную 

структуру,  
 деформирование заготовки описывается по методу Джонсона–Кука с 

использованием критерия пластичности Мизеса. 
Прогностическое моделирование реализовано в три этапа (рисунок 1). 
I. Аналитическое моделирование процесса обработки зубчатого колеса. 
На данном этапе моделирования производится расчет геометрических параметров 

срезаемой стружки и кинематического изменения переднего и заднего углов резания. На 
рисунке 2 приведена расчетная схема для определения геометрии поперечного сечения 
стружки и геометрии инструмента. Для реализации будет использован подход, 
предложенный А. С. Тарапановым и Г. А. Харламовым, основанный на методах векторного и 
математического анализа [13]. Исходный профиль обрабатываемого зубчатого колеса 
задается уравнениями алгебраических кривых. Использование такого задания позволяет 
найти практически неограниченное количество точек линии контакта инструментальной и 
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Для описания процесса деформирования материала заготовки, используется модель 
Джонсона и Кука. Данная модель позволяет обеспечить достаточно точное описание 
поведения материала в условиях больших деформаций в сочетании с высокими 
температурами [6]. 

Результаты виртуальных испытаний позволяют рассчитать фундаментальные 
физические переменные (силы резания, температуры), характеризующие процесс обработки, 
а затем произвести прогноз практических результатов обработки (износ инструмента, 
точность и шероховатость обрабатываемой поверхности). 

Расчет физических переменных, характеризующих процесс резания. 
В качестве примера использования предложенной методики, рассмотрим процесс 

обработки конического зубчатого колеса резцовой головкой. 
Геометрия стружки была получена при помощи аналитического моделирования 

процесса резания. Схема представлена на рисунок 6. Рассмотренные условия типичны для 
обработки сложных поверхностей деталей машин, например, конического зубчатого колеса, 
в середине реза.  

Исходные данные для рассматриваемого случая моделирования приведены в таблице 1. 
 

Таблица 1 – Исходные данные 

 
Свойства материала заготовки, необходимые для описания деформации по методу 

Джонсона–Кука, приведены в таблице 2. 
 
Таблица 2 – Параметры материала заготовки 

Параметр процесса резания Значение 
1 2 

Толщина стружки, снимаемой боковой режущей кромкой b1, мм 0,2 
Толщина стружки, снимаемой вершинной режущей кромкой b2, мм 0,07 
Длина боковой режущей кромки a1, мм 2,9 
Длина вершинной режущей кромки a2, мм 0,4 
Профильный угол резца α, град 20 
Радиус закругления вершины резца r0, мм 0,2 
Радиус закругления режущих кромок r, мм 0,01 
Задний угол резания боковой режущей кромки αб, град 5 
Кинематическое изменение заднего угла боковой режущей кромки 
Δαб, град 

0,025 

Передний угол резания боковой режущей кромки γб, град 6 
Кинематическое изменение переднего угла боковой режущей 
кромки Δγб, град 

0,015 

Задний угол резания вершинной режущей кромки αв, град 8 
Кинематическое изменение заднего угла вершинной режущей 
кромки Δαв, град 

0,02 

Передний угол резания вершинной режущей кромки γб, град 6 
Кинематическое изменение переднего угла вершинной режущей 
кромки Δγб, град 

0,012 

Скорость резания V, м/мин; 100 
Материал инструмента Карбид вольфрама 
Материал заготовки 16МnCr5 

Параметр ε A B C n m 
Ед. изм. 1/с МПа МПа – – – 
Значение 1 560 400 0,022 0,2 1,0 
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Следующим шагом научно–исследовательской работы будет проверка адекватности 
гибридной прогностической модели процесса обработки зубчатых колес, путем проведения 
экспериментальных исследований и анализа полученных данных. Целью 
экспериментального исследования будет являться подтверждение расчетных значений 
фундаментальных физических переменных, характеризующих процесс резания (силы 
резания; температуры), а также величин, характеризующих результат обработки (точность 
обрабатываемого зубчатого колеса; шероховатости зубчатого профиля; износ инструмента). 

Коллектив авторов выражает благодарность Российскому научному фонду за оказанную 
финансовую поддержку при выполнении проекта «Разработка методов и алгоритмов гибридного 
прогностического моделирования и оптимизации лезвийной обработки зубчатых колес стандартного и 
специального профиля» соглашение № 17–79–10316. 
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N.V. KANATNIKOV, G.A. HARLAMOV, A.S. PASHMENTOVA, A.A. GUKOV 
 

METHODOLOGY OF HYBRID PREDICTIONAL MODELING  
OF BLADE PROCESSING OF GEAR WHEELS  

OF STANDARD AND SPECIAL PROFILE 
 
Abstract. This work is aimed at solving the problem of virtual design of new technological processes and 

predicting the results of processing gears of standard and special profiles. The article presents a technique for hybrid 
simulation processing gears of standard and special profiles. The obtained results allow to design, simulate, and also 
test in a virtual environment reflecting real conditions at the stage of design and technological preparation of 
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МАШИНОВЕДЕНИЕ И МЕХАТРОНИКА 

УДК 621.8, 621.822.1, 62–251 
 

А.В. СЫТИН, А.Ю. РОДИЧЕВ, А.В. КУЗАВКА 
 

ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ МЕХАТРОННОЙ  
УСТАНОВКИ ДЛЯ ИСПЫТАНИЯ ЛЕПЕСТКОВЫХ 

ГАЗОДИНАМИЧЕСКИХ ПОДШИПНИКОВ 
 

Аннотация. В статье рассматривается мехатронная установка для исследования лепестковых 
газодинамических подшипников, которая представляет собой мехатронную систему, состоящую из: 
лепесткового газодинамического подшипника, регистрирующей части, электромагнитных актуаторов и 
электронной системы управления. Разработка мехатронной экспериментальной установки включает в себя 
построение структурно–функциональной схемы, компоновку регистрирующих и управляющих систем. В 
разрабатываемой конструкции реализовано активное управление, которое  необходимо для отслеживания 
траектории движения, непосредственно связанной с критическими прогибами опорной поверхности, а также 
своевременного воздействия на управляемый объект. Управляемым объектом является полый ротор, 
вращающийся в лепестковых газодинамических подшипниках. Электромагнитный блок представляет 
магнитный подвес, который служит стабилизатором положения ротора во время пуска и останова 
экспериментального стенда, а также позволяет моделировать нагружение ротора в соответствующих 
направлениях. Установка комплектуется универсальной и гибкой измерительной системой, построенной на 
базе комплектующих National Instruments и программного продукта Labview. 

Ключевые слова: мехатронная система, магнитный подвес, ротор, упругий элемент, подшипниковый 
узел, установка, втулка, крепление, технология, датчик, магнит. 

 
Введение. 
Увеличение частоты вращения ротора позволяет избежать значительного увеличения 

массогабаритных характеристик турбоагрегата, при повышении производительности, что 
особенно важно для нестационарных установок. Вместе с тем, повышение частоты вращения 
валов в подшипниках скольжения ограничивается большими потерями на трение и ростом 
температуры, которые сильно возрастают с ростом окружной скорости. Быстроходные 
подшипники скольжения приходится снабжать громоздкими охлаждающими устройствами. 
Поэтому эффективным путем повышения предельной частоты вращения является 
использование смазочных материалов с малой вязкостью. Очевидно, что наибольшие 
скорости могут быть достигнуты с помощью газовой, преимущественно воздушной смазки. 
Поскольку газовые подшипники могут обеспечить машинам высокий срок службы, и 
сокращение массы и габаритов, становится очевидной перспективность их применения [1, 2]. 
Известно, что предельная быстроходность подшипников качения существенно снижает 
возможность их применения  в высокоскоростных турбомашинах с рабочими частотами 
вращения 30 · 103 – 100 · 103 об/мин и более. 

Смазочный слой в лепестковых газодинамических подшипниках (ЛГДП) образуется 
между валом и одним или несколькими гибкими тонкими лепестками толщиной 0,1…0,5 мм, 
имеющих на поверхности, обращенной к валу антифрикционное покрытие. Между этими 
лепестками и корпусом подшипника устанавливаются дополнительные тонкостенные 
элементы, предназначенные для создания необходимых характеристик жесткости и 
демпфирования. Силы трения, возникающие при работе в зонах контакта между лепестками, 
между лепестками и корпусом, а также силы упругой деформации лепестков рассеивают 
энергию колебаний ротора и улучшают динамические характеристики машины, позволяют 
достигать высоких частот вращения. Податливость лепестка позволяет обеспечить 
чрезвычайно малые зазоры между цапфой и опорной поверхности на большой площади и 
получить несущую способность, достаточную для многих высокооборотных турбомашин 
различного назначения [3, 4]. 

Традиционные лепестковые подшипники принципиально не могут быть использованы 
для решения ряда сложных технических задач. Происходит это в тех случаях, когда, 
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Заключение. 
Применение системы активного управления требует введения в математическую 

модели дополнительных компонентов, учитывающих работу системы управления. 
Поскольку решение уравнений в процессе моделирования ЛГДП предполагает решение 
дифференциальных уравнений итеративными методами, учет активного управления будет 
выражаться в изменении начальных условий для каждой из итераций в соответствии с 
данными, полученными на выходе математической модели системы управления. Повышение 
уровня управляемости конструкций, основанное на синтезе механики, электроники и 
информационных технологий, следует рассматривать как объективную закономерность 
развития техники. Результатом такого развития являются технические устройства нового 
класса, представляющие собой деформируемые системы с переменными управляемыми 
параметрами. 

Представленные исследования выполнены в рамках проекта 9.2952.2017/ПЧ проектной части 
государственного задания «Создание многофункционального лабораторно–методологического комплекса 
общеинженерной подготовки». 
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A.V. SYTIN, A.Yu. RODICHEV, A.V. KUZAVKA 
 

PECULIARITIES OF DESIGN OF A MECHATRONIC TEST  
RIG TO STUDY FOIL GAS DYNAMIC BEARINGS 

 
Abstract. The paper considers a mechatronic test rig for the study of foil gas dynamic bearings, which is a 

mechatronic system consisting of: a foil gas dynamic bearing, a sensor system, electromagnetic actuators and an 
electronic control system. The development of a mechatronic test rig includes the formulation of a structural–functional 
scheme, the layout of sensor and control systems. In the developed design, active control is implemented, which is 
necessary to track the trajectory of motion, directly related to critical deflections of the bearing surface, as well as to 
timely influence the controlled object. The controlled object is a hollow rotor, rotating in foil gas dynamic bearings. 
The electromagnetic unit represents a magnetic suspension that acts as a stabilizer of the rotor position during the 
start–up and shutdown of the test rig, and can also model the loading of the rotor in the appropriate directions. The test 
rig also faetures a universal and flexible measuring system based on National Instruments components and the 
LabVIEW software. 

Keywords: mechatronic system, magnetic suspension, rotor, elastic element, bearing node, test rig, sleeve, 
fastening, technology, sensor, magnet. 
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Т.В. ШЕХОВЦЕВА, Е.В. ШЕХОВЦЕВА 
 

МЕТОДИКА ПРОЕКТИРОВАНИЯ  
ПЛАНЕТАРНО–ДИФФЕРЕНЦИАЛЬНОГО РЕДУКТОРА 

 
Аннотация. Основная цель работы – это разработка метода проектирования редуктора для 

малоразмерного авиационного турбовинтового двигателя (ТВД), где входной вал соосен с выходными валами и 
габариты редуктора составляют не более Ø180х180 мм при частоте вращения входного вала 35000 об/мин. 

Разработана оригинальная методика проектирования планетарно–дифференциального редуктора, 
которая позволяет выполнять оптимизацию на различных стадиях. Спроектировано на базе разработанной 
методики несколько редукторов, конструкция которых запатентована. В результате использования 
двухпарного зацепления, что делает коэффициент перекрытия более двух, увеличивается несущая 
способность зубчатых передач редуктора. Использование уравнительного механизма обеспечивает любое 
сочетание крутящего момента и частоты вращения на выходных валах. В спроектированном редукторе 
обеспечена разгружающая осевая нагрузка на подшипниках, что позволило уменьшить габариты редуктора. 

Ключевые слова: методика проектирования, планетарно–дифференциальный редуктор, зубчатая 
передача 

 
Введение 
Развитие авиационной техники имеет стойкую тенденцию к уменьшению габаритов 

двигателя и его массы с повышением надежности работоспособности основных узлов. В 
этом смысле редуктора, в том числе и зубчатые колеса, исключением не являются. 
Современные зубчатые передачи двигателей подвержены высоким силовым, температурным 
и вибрационным нагрузкам. В конструктивном и технологическом отношениях они являются 
одними из сложных деталей двигателя. Обеспечение качества их изготовления, надежности и 
ресурса, является актуальной задачей при создании и производстве конкурентоспособных 
ГТД. Повышение надежности с обеспечением минимальных габаритно–массовых 
характеристик – один из основных технико–экономических показателей качества зубчатых 
передач редукторов малоразмерных ТВД. В настоящие время повышается необходимость в 
создании методики проектирования редуктора ТВД с оптимизацией геометрии зуба с учетом 
сокращения цикла его создания. Это связано с востребованностью малоразмерных 
двигателей и переоснащением производства современным технологическим оборудованием. 

Уменьшение габаритов редукторов ТВД и соосность выходных и входного валов 
требует применять компактные конструктивные решения без снижения требований к 
прочностным характеристикам зубчатых колес. Этот факт привел к широкому применению 
дифференциальных и планетарных передач. Но многообразие конструктивных решений и 
ограниченность по времени требует автоматизации процесса проектирования. Известен 
способ проектирования и разработки зубчатой передачи, включающий этап ввода исходных 
данных для разработки, затем этап определения габаритных параметров передачи, так же 
этап фильтрации по габаритным размерам, на котором выбирают зубчатые передачи, у 
которых габаритные размеры находятся в диапазонах значений, указанных на этапе ввода 
исходных данных, затем проводят оценку по прочностным характеристикам и выбирают 
габаритные окончательные размеры зубчатой передачи на окончательном этапе [1]. 

Недостатками данного способа являются узкая область применения данного способа, 
связанная с возможностью применения только для отдельно взятых зубчатых передач, а не 
для редуктора в целом и не для планетарных передач. Выполняется только этап прочностной 
оценки, что негативно сказывается на габаритных размерах зубчатой передачи, потому что 
фильтрации выполняется только по ширине зубчатого венца. Следовательно, данный способ 
является недостаточным для оптимального выбора зубчатой передачи, например, 
коэффициент перекрытия (модификация) зубчатого венца повышает прочность при меньших 
длинновых размерах венца. 

Известен способ автоматизированного проектирования редукторов в программном 
пакете «КОМПАС 3D» [2], включающий этап ввода исходных данных, затем этап 
определения геометрических характеристик, этап оценки по прочностным показателям 
передачи, этап рабочей компоновки, и окончательный этап, на котором создают модель 
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разрабатываемого редуктора с выбором технологических и конструкторских параметров 
(например, материал зубчатых колес, выбор подшипников). 

Недостатком данного способа является то, что в способе имеется только этап рабочей 
компоновки без наличия эскизной компоновки, что увеличивает время проектирования 
редуктора, связанное с выбором его оптимальной конструкции, а так же требуется высокая 
квалификация персонала для анализа проектируемых конструкций. Еще одним недостатком 
является ограниченная область применения способа, позволяющая выполнять разработку 
только простых одноступенчатых редукторов, имеющих один входной вал и один выходной 
вал, а так же для передач только внешнего зацепления. 

Известен способ изготовления редуктора [3], включающий этап ввода исходных 
данных, этап разработки планетарной передачи с обеспечением условий соседства, 
соосности и сборки, и этап фильтрации по передаточному числу, на котором выбирают 
конструкцию редуктора, итоговое передаточное число которого удовлетворяет исходным 
данным. 

Недостатками данного способа являются отсутствие прочностной оценки при 
разработке конструкции и отсутствие условий выбора оптимального варианта конструкции 
редуктора, в результате чего окончательный вариант конструкции редуктора выбирается 
исходя из квалификации инженера. Еще одним недостатком является ограниченная область 
применения, так как способ, возможно, применять только для редукторов с одной 
планетарной передачей. 

Наиболее близким является способ изготовления редуктора [4], включающий этап 
ввода исходных данных для разработки, после которого следует этап составления 
максимального количества вариантов конструкции, так же этап фильтрации, этап оценки и 
выбора и окончательный этап получения конструкторского решения. 

Недостатками способа являются то, что визуализация проектируемого редуктора 
осуществляется только на окончательном этапе с последующим этапом фильтрации, 
которому предшествует большой объем проектных работ по разработке всех вариантов 
возможной конструкции редуктора. Фильтрация выполняется только по диапазону 
параметров, заданных в исходных данных, то есть несколько вариантов (минимум два) 
доходят до последнего этапа проектирования, и только после этого по конструктивным 
параметрам выбирается один вариант. Следовательно, данный способ обладает высокой 
трудоемкостью. 

Таким образом, возникает актуальная задача разработки методики проектирования 
редукторов любого типа, где будут учтены возможные сочетания различных типов передач и 
зацеплений, так же снижение трудоемкости проектирования, связанное с наглядностью 
этапов и с наличием нескольких этапов фильтрации, позволяющих в результате выбрать 
оптимальную конструкцию редуктора, удовлетворяющую требованиям исходных данных. 

Целью работы является создание методики оптимальной и наглядной разработки 
конструкции редуктора малоразмерного ТВД с повышением несущей способности зубчатых 
колес за счет геометрии зацепления при уменьшении частоты вращения от входного вала к 
выходным около пяти раз. 

Новизна работы заключается в разработке оригинальной методики проектирования 
редукторов [5] со снижением трудоемкости на проектирование редуктора благодаря 
наличию наглядных этапов (этапы эскизной и рабочей компоновки), а также этапов основной 
и дополнительной фильтрации (по геометрическим показателям) для оперативной 
оптимизации конструкции и этапа оценки и выбора по показателям (конструктивные, 
технологические, прочностные, эксплуатационные). 

Практическая значимость и достоверность применения данной работы наглядно 
представлена в разработанных и наиболее перспективных редукторах [6–9] с оценкой 
несущей прочности зубчатых передач и их габаритов. 

Алгоритм проектирования редуктора 
Разработана методика проектирования редуктора [5], содержащая этап ввода 

исходных данных для разработки, после которого следует этап составления максимального 
количества вариантов конструкции, так же этап фильтрации, этап оценки и выбора и 
окончательный этап получения конструкторского решения. На рисунке 1 представлен общий 
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конструкции редуктора, затем конструкторский чертеж, на основе которого изготавливают 
готовый редуктор с двумя выходными валами, затем проводят испытания изготовленного 
редуктора для подтверждения заявленных исходных данных. 

После этапа фильтрации по геометрическим параметрам дополнительно проводят 
этап составления вариантов редуктора с уравнительным механизмом в зависимости от 
сочетания типа зацепления и типа передачи. 

После этапа эскизной компоновки дополнительно вводят этап фильтрации группы 
выбранных редукторов по основным параметрам, на котором из группы выбранных 
редукторов выбирают для последующей разработки редуктора, у которых значения 
основных параметров находятся в диапазонах значений, указанных на этапе ввода исходных 
данных. 

На рисунке 2 представлен подробный алгоритм проектирования редуктора, в котором 
заложена возможность оптимизации на трех основных этапах – проверка геометрической 
совместимости (этап 3), определение передаточного отношения (этап 10) и разработка 
планетарного механизма (этап 5). 

Предложенный метод изготовления редуктора позволяет изготовить редуктор 
оптимальной конструкции, удовлетворяющий требованиям заказчика. Способ позволяет 
изготовить конструкцию любого редуктора (от простого до планетарного и/или 
дифференциального редуктора) благодаря тому, что учтены возможности сочетания передач 
с различными вариантами зацепления и механизмов. Применение данной методики 
способствует снижению трудоемкости на проектирование изготовление редуктора благодаря 
наличию наглядных этапов (этапы эскизной и рабочей компоновки), а также этапов 
фильтрации (по геометрическим показателям) и этапа оценки и выбора по показателям 
(конструктивные, технологические, прочностные, эксплуатационные). 

Данный алгоритм был опробован на практике при проектировании редуктора для 
малоразмерного турбовинтового двигателя с одним входным валом (ротор) и двумя 
выходными валами (нагружающие элементы). Поэтапная разработка представлена на базе 
подробного алгоритма по рисунку 2. 

Этап 1: Исходные данные:  
– Частота вращения входного вала 35000 об/мин; 
– Частота вращения выходных валов 6860…7000 об/мин; 
– Максимальная передаваемая мощность редуктором 1000 кВт; 
– Коэффициент полезного действия (КПД) не ниже 0,99; 
– Ресурс не менее 30 часов; 
– Габаритные размеры не более Ø170 мм и длина не более170 мм; 
– Масса редуктора не более 6 кг; 
– Валы соосны; 
– Направление вращения выходных валов – противоположное; 
– Распределение крутящего момента по выходным валам 50%–50%; 
Частота вращения выходных валов – одинаковая. 

Этап 2: Максимальное возможное количество вариантов редукторов данного типа 
тридцать шесть, учитывая все существующие конструкции [10–13], причем редуктор имеет 
быстроходную и тихоходную ступени. 

Этап 3: Из этих тридцати шести вариантов редукторов проверку по геометрической 
совместимости прошли шестнадцать схем (рисунок 2). 

Этап 9: Для такого типа редукторов необходим уравнительный механизм. По 
конструктивным особенностям его могут иметь только десять вариантов редукторов. Причем 
вариантов уравнительных механизмов может быть тридцать шесть, для разработки такого 
редуктора подходят пятнадцать вариантов. 

Этап 4: Строят эскизную компоновку десяти редукторов с уравнительным механизмом 
и определение основных параметров зубчатых зацеплений (число зубьев, модуль, ширина 
зубчатого венца, угол профиля). Получается девять схем редукторов, пример одной из схем 
показан на рисунке 2. 

Этап 10: не требуется. 
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перекрытия больше 2) и увеличения числа зубьев в передачах. Это достигается применением 
в конструкции передачи с двумя косозубыми зубчатыми колёсами внешнего зацепления со 
встречными углами наклона линии зуба относительно друг друга – угол наклона линии зуба 
на начальной окружности β =(20…30), что позволяет довести рабочий угол внешнего 
зацепления до αW = 29,205 и рабочий угол внутреннего зацепления до αW = 26,571. 

Высокие углы зацепления и большее количество зубьев, по сравнению с одновенцовым 
прямозубым сателлитом позволило довести КПД наружного зацепления до н = 99,65 и 
внутреннего зацепления до в = 99,85. 
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T.V. SHEHOVTSEVA, E.V. SHEHOVTSEVA 
 

THE DESIGN METOD OF THE PLANETARY–DIFFERENTIAL DRIVE 
 

Abstract. The main purpose of work is the development of drive design method for small aircraft turbo–
propeller engine (TPE), where the input shaft is coaxial with output shafts, and the gearbox sizes are not more than 
Ø180х180 mm for the rate speed of input shaft 35000 r/min. The original design method of the planetary–differential 
drive was developed and allows the execution of the optimization on different stages. Some drives were designed 
according to the base of the developed method, the construction of which was patented.  As the result of using double 
tooth contact, which make the contact ratio  more then two, the bearing resistance  of the drive increases. The use of 
leveling device provides any combination of turning torque and rotation frequency on output shafts. In the designed 
drive the unloading thrust load is provided on the bearings, which allowed the reducing of the drive size. 

Keywords: design method, planetary–differential drive, gear. 
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М.А. СИТНИКОВА, А.И. БУКОВСКИЙ 
 

АППАРАТНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ РОБОТИЗИРОВАННОЙ 
ЧИСЛОВОЙ ЛИНИИ  

 
Аннотация. Владение математическими навыками имеет большое значение, как для каждого 

конкретного человека, так и для общества в целом. Недостаточнаясформированность основных 
математических навыков и понимания числовых величин, в последствие, может привести к проблемам в 
карьерном росте и снижению качества жизни в целом.  

На сегодняшний день у многих взрослых и детей наблюдается боязнь математики (mathanxiety), это 
считается полноценной фобией, проявляющейся как сильно выраженный навязчивый страх. Боязнь 
математики начинается с непонимания основ и порождает отсутствие интереса к более сложным 
абстрактным понятиям. 

Предотвратить возникновение и развитие, а также скорректировать уже начавшую формироваться 
математическую фобию в старшем дошкольном и младшем школьном возрасте помогают развивающие 
занятия, которые в увлекательной игровой форме позволяют научить ребенка выполнять сравнение числовых 
величин, определять позицию числа на числовой линии. 

В настоящее время существуют пространственно–числовые тренинги, развивающие игры (в том 
числе и компьютерные), однако, более перспективным, на наш взгляд, является применение тренинга на основе 
воплощенного числового познания в форме игры с элементами социального взаимодействия. 

Ключевые слова: робот, математика, обучение счету, числовые тренинги, числовая линия. 
 

Введение. 
Математика является неотъемлемой частью повседневной жизни и играет важную 

роль в современном обществе на всех уровнях.Приобретение математических способностей 
имеет большое значение, как для каждого конкретного человека, так и для общества в целом 
[1]. Отсутствие или недостаточная сформированность основных математических навыков и 
понимания числовых величин может вызвать трудности в решении даже простых 
повседневных задачи, таких как, например, покупка товаров в магазине. В последствие 
отсутствие нужных математических компетенций может привести к проблемам в карьерном 
росте, к снижению качества жизни в целом. Этот факт был подтвержден исследованием, 
проведенным в Великобритании. Результаты говорят о том, что люди, испытывающие 
серьезные трудности с арифметикой, меньше зарабатывают, чаще болеют и чаще нарушают 
законы. Социологи выяснили, при условии того что удалось бы подтянуть 20% самых 
«математически отсталых» американцев до минимально приемлемого уровня по стандарту 
«Международной программы по оценке образовательных достижений учащихся» (см.: 
PISA), это обеспечило бы дополнительный прирост ВВП на 0,74% в год.  

Сегодня у многих взрослых и детей наблюдается боязнь математики. Ученые считают 
это полноценной фобией (math anxiety) в современном обществе [2], проявляющейся как 
сильно выраженный навязчивый страх, не поддающийся полному логическому объяснению  
и обостряющийся в ситуациях необходимости решать математические задачи. 
Математическая фобия начинается с непонимания основ математики, с отсутствия интереса 
к сложным абстрактным понятиям. В дальнейшем тревога усиливается, перерастая в стресс, 
и человек начинает избегать объектов, видов деятельности или ситуаций, связанных с 
оперированием математическими понятиями. Математика не представляет собой реальную 
угрозу, но проявления математической фобии вызывают совершенно реальную физическую 
реакцию, сопровождающуюся выбросом гормонов стресса, например кортизола, что 
характерно для таких реакций, как "бей или беги". 

Предотвратить возникновение и развитие, а также скорректировать уже начавшую 
формироваться математическую фобию в старшем дошкольном и младшем школьном 
возрасте помогают специально организованные развивающие занятия, которые в 
увлекательной игровой форме позволяют научить ребенка выполнять сравнение числовых 
величин, определять позицию числа на числовой линии, производить простейшие 
арифметические вычисления с одно– и двузначными числами. В настоящее время 
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существуют пространственно–числовые тренинги и развивающие компьютерные игры, 
например, "Числовая гонка" [3] и "Спасение Калькуляриса" [4], числовые настольные игры 
(линейные настольные игры) [5]. 

Однако более перспективным, на наш взгляд, является применение тренинга на 
основе воплощенного числового познания в форме игры с элементами социального 
взаимодействия. Основная идея воплощенного числового познания основана на 
предположении, что двигательная система не только контролирует и отслеживает действия, 
но также оказывает влияние на формирование мысленных представлений о числах (Domahs 
и др., 2008). Ярким примером воплощенного числового познания на практике является 
использование детьми пальцев рук для счета, которое представляет собой универсальный 
этап в развитии математических компетенций у детей. 

Основная часть. 
Двигательная активность всего тела, используемая в пространственно–числовых 

тренингах на основе воплощенного числового познания с использованием числовой прямой, 
является очень эффективной и перспективной стратегией развитии различных 
математических навыков [6–8]. Дети во время движения слева направо вдоль числовой 
линии усваивают на сенсорном уровне, что большие числа требуют перемещения на 
большие дистанции по сравнению с малыми числами, когда достаточно сделать несколько 
шагов и достичь цели. Различные типы систематических движений тела вдоль числовой 
линии в соответствие с ориентацией слева направо могут быть использованы для 
усовершенствования арифметических навыков и точности при определении положения 
числа на линии. Включение в тренинг элементов соревнования с другими детьми или даже 
социальными роботами в качестве партнеров по социальному взаимодействию позволит 
сделать его более продуктивным достичь более значимых результатов в развитии 
математических навыков [9, 10]. Использование в качестве партнера ребенка робота дает 
возможность управлять сложностью соревнований, позволяя ребенку выигрывать достаточно 
часто, чтобы повысить его мотивацию. 

Целью нашего исследования является разработка пространственно–числового 
тренинга с помощью роботизированного программно–аппаратного комплекса «Числовая 
линия» [11] (рисунок 1).  

Все компоненты комплекса синхронизированы и связаны  в беспроводную локальную 
сеть (центральный компьютер, к которому присоединен проектор, 2 дальномера, лазерный 
построитель числовой линии, 2 цифровых коробки). 
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Рисунок 1 – схема роботизированной числовой линии (вид сверху): 

1– Ребенок, 2– Робот, 3– Экран проектора, 4– Числовая линия, нарисованная лазером, 5– Коробка ребенка,  
6– Коробка робота, 7– Лазерный дальномер (А) с поворотным по углу устройством,  

8– Лазерный дальномер (Б) с поворотным по углу устройством 
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Основой системы управления является бюджетный микроконтроллер Atmega 64. 
Управление шаговыми привода колес платформы, перемещения корзинки и планшетного 
компьютера осуществляется посредством драйверов. Определение текущего 
местоположения осуществляется с использованием платы навигации В ее состав входят 
датчики: магнитный компас, 3 ультразвуковых датчика расстояния и оптический датчик 
черной линии. Связь с планшетным компьютером осуществляется посредством 
периферийного моста. 

Заключение. 
Мы ожидаем, что решение пространственных числовых задач в сочетании с 

движением всего тела вдоль числовой линии и взаимодействие с роботом или другим 
ребенком в качестве партнера в форме соревнования во время тренинга позволит получить 
значительные образовательные результаты, подтверждая функциональное преимущество 
использования телесного опыта в развитии математических способностей и навыков. 
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M.A. SITNIKOVA, A.I. BUKOVSKY 
 

HARDWARE SUPPORT FOR THE ROBOTIZED NUMERIC LINE 
 

Abstract. Mastering mathematical skills is of great importance, both for each individual and for society as a 
whole. Insufficientformation of the basic technical skills and understanding of the number of previous values, in 
consequence, can lead to problems in career growth and the achievement of the quality of life in general. 

To date, many adults and children have a fear of mathematics (mathanxiety), this is considered a full–fledged 
phobia, manifested as a strong obsessive fear. Fear of mathematics begins with a lack of understanding of the 
fundamentals and generates a lack of interest in more complex abstract concepts. 

Prevent the emergence and development, as well as adjust the already begun to form a mathematical phobia in 
the senior preschool and junior school age, developing classes that in an exciting game form allow you to teach the 
child to perform a comparison of numerical values, determine the position of the number on a numeric line. 

Currently, there are spatial–numerical trainings, developing games (including computer games), however, in 
our opinion, more promising is the application of training based on the embodied numerical knowledge in the form of a 
game with elements of social interaction. 

Keywords: robot, mathematics, account training, numerical trainings, numeric line. 
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A.V. CHASTUKHIN 
 

APPLICATION OF INDUSTRIAL ROBOTS FOR MANUFACTURING  
AND REPAIRING BY SELECTIVE LASER SINTERING METHOD 
 
Abstract. The article describes one of an additive manufacturing technology – selective laser sintering. 

General advantages of industrial robots’ usage for methods of selective laser sintering are given. The sequence of 
setting of CNC program for an industrial robot which is used at additive manufacturing processes is given. This 
sequence implies the usage of CAM (computer–aided manufacturing) system.  

The example at the article describes a process of getting CNC program for industrial robot KUKA KR–15 
through special software. The process of a calculation of a CNC program is described step by step: from an import of a 
3D model into the system SprutCAM to a generation of the program through a postprocessor of robot control system. 

Keywords: robototehnologicheskie systems, industrial robot, selective laser sintering, robot programming. 
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УДК 631.37 (075.8) 
 

Е.В. СЛИВИНСКИЙ., С.Ю. РАДИН, И.Н. ГРИДЧИНА 
 

ИССЛЕДОВАНИЕ ПРОСТРАНСТВЕННЫХ КОЛЕБАНИЙ 
ДВУХЗВЕННОГО АВТОПОЕЗДА 

 
Аннотация. В статье представлена методика аналитических исследований пространственных 

колебаний двухзвенного  автомобильного поезда состоящего из автомобиля тягача и двухосного прицепа с 
использованием разработанной двух массовой расчётной схемы имеющей реальные геометрические размеры 
позволяющие определить абсолютные перемещения центров тяжести рассматриваемых масс, необходимых 
для составления уравнений кинетической и потенциальной энергий системы с использованием построены 
Лагранжа второго рода. В результате полученных дифференциальных уравнений  и их решений построены 
амплитудно частотные графики позволяющие установить резонансные зоны колебаний звеньев автопоезда и 
предложены технические решения на уровне изобретений повышающих устойчивость движения последнего. 

Ключевые слова: тягач, прицеп, дышло, поворотный круг, подкатная тележка, рама, дорожные 
неровности, виляние, боковая качка, подёргивание. 

 
Введение. 
Для аналитического исследования колебаний и силового нагружения  

конструкционных элементов автотракторного самосвального прицепа 2ПТС–4–793А 
разработана  расчётная схема автотракторного поезда (рисунок 1), эквивалентная натурному 
автопоезду, состоящему из автомобиля тягача ГАЗ–53А и прицепа 2ПТС–4–793А.  

Основная часть. 
На схеме геометрические размеры автопоезда имеют следующие обозначения: ат — 

расстояние от оси управляемых колес автомобиля тягача до его центра тяжести; Lт — база 
автомобиля тягача; lT — расстояние от оси управляемых колес автомобиля тягача до точки 
сцепа его с дышлом прицепа; dт — расстояние от центра тяжести автомобиля тягача  до 
горизонтальной плоскости сцепа; Вр и Вк— колея передних колес автомобиля тягача и 
прицепа Bт и Вп — колея задних колес трактора и прицепа; а1 — расстояние   от центра 
тяжести   прицепа до его места сцепа с автомобилем тягачом; l1,—расстояние от центра 
поворотного круга до места сцепа поворотной тележки с автомобилем тягачом;  L1 — 
расстояние от задней оси прицепа до поворотного круга; dк — расстояние от центра тяжести 
подкатной тележки до плоскости соединения дышла с подкатной тележкой; dп — расстояние 
от центра тяжести прицепа до плоскости сцепа  автомобиля тягача и прицепа. 

Принятая модель состоит из mT  и  mП , которые соответственно обозначают: массу 
автомобиля тягача, приведённую к его центру тяжести; массу прицепа с рамой, платформой, 
с  осями колёс и рессорным комплектом. К приведённым массам в процессе движения 
тракторного поезда приложены следующие внешние нагрузки: РТ – тяговое усилие 
автомобиля тягача;  Ррп, Ррл, Ррп  и  Ррл – горизонтальные продольные силы сопротивления 
качению рулевых и ведущих колёс, приложенные в точке контакта колёс с дорогой и 
вызывающие пространственные колебания автомобиля тягача;  Грп , Грл , Гпр  и Гл – 
горизонтальные поперечные силы, вызывающие боковой увод колёс и приложенные в точке 
контакта колёс автомобиля тягача  с дорогой; Р2п, Р2л, Р3п  и Р3л – горизонтальные 
продольные силы сопротивления качению рулевых и ведомых колёс прицепа и приложенные 
в точках контакта его колёс и вызывающие пространственные колебания прицепа; Г2п , Г2л , 
Г3п  и Г3л – горизонтальные поперечные силы, вызывающие боковой увод колёс и 
приложенные в точке контакта колёс прицепа с дорогой. 

Положение масс исследуемой системы в пространстве в любой момент времени 

определяется следующими координатами: 1ïx  – абсолютное перемещение массы m1 

прицепа, характеризующее виляние прицепа;  1ïó  – абсолютное перемещение массы m1 

прицепа, характеризующее  подёргивание прицепа; 1ïz  – абсолютное перемещение массы m1, 
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Составим общее уравнение движения автопоезда по формуле Лагранжа: 

Q
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q
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dt

d
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

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
,

                                          (1) 

Анализ  модели (рисунок 1) показывает, что по геометрическим размерам ее связей и 
элементов можно определить абсолютные перемещения центров тяжести рассматриваемых 
масс, необходимые для составления уравнений кинетической и потенциальной энергий 
системы. Так, абсолютное перемещение массы дышла по осям ОХ, ОУ, OZ. определяется 
методом алгебраического сложения относительных перемещений:  

XП= Х0 + lт cos βт  sin φт +X1+ a1 cos β T  sin φT ≈ X0 + lтφт +Х1+а1φ1, 
YП = Y0 + lт cos βт cos φт +Y1+ a1 cos β 1  cos φ1 ≈ Y0 + lт +Y1+а1, 
ZП = Z0 + lт cos φт  sin βт – Z1+ a1 cos φ 1  sin β1 ≈ Z0 + lт +β т –  Z1+а1β1. 
В окончательной форме указанные уравнения записаны исходя из того, что для малых 

углов  βТ   cos βТ ≈ 1, а sin βТ ≈ βТ  (аналогично для φT, φ1, β1 ). 
С учетом принятых допущений и на основании работ [1–4] в плоскостях ZОУ, ZОХ и 

УОХ с учетом сил сопротивления в кинематических парах выведены уравнения энергий:  
1.Кинетической — 

2 2 2 2 2
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2 2 2 2
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и запишем частные производные для  первого члена уравнения                      )(
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и запишем частные производные для  третьего члена уравнения П
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3.Работы внешних сил на виртуальных перемещениях 
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и запишем частные производные для  правой части уравнения (2.1) Q по Х1, Y1, Z1,, φТ, βТ 
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Подставляя уравнения (2), (3) и (4) в уравнение Лагранжа (1)  и считая, что второй 

член этого уравнения 
T

q
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


, равен нулю, получим систему 5 дифференциальных уравнений 

второго порядка (5):  

(4) 
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Сгруппировав члены, производные которых имеют одинаковый порядок, получим 

следующую систему уравнений (6): 
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и  преобразуя его, получим систему в виде (7): 
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 В матричной форме данные уравнения имеют вид: 

(5) 

(6) 

(7) 
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 Для упрощения предполагаем, что в процессе движения  автопоезда его массы 
совершают установившиеся вынужденные колебания с фиксированной круговой частотой ω. 
Решение системы дифференциальных уравнений (2.5), описывающих продольные и 
продольно–угловые колебания масс  автопоезда, ищем в форме: 
                                   φi (t) =   φai  cos ωt,       βi(t)=βai  cos ωt  
                                  Xi (t) =   Xai  cos ωt,       Zi(t)=Zai  cos ωt                                   (9) 

                                  Yi (t) =   Yai  cos ωt,        
где  φai , Xai , Yai ,  βai, Zai – амплитуды колебаний масс автопоезда. 
 После подстановки решений (9) в систему дифференциальных уравнений (7) получим 
систему линейных алгебраических уравнений 
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    (10) 

Численные значения инерционных и жесткостных коэффициентов aij и bij входящих в 
систему уравнений (10) вычислены по следующим зависимостям (11). 

Из представленной динамической модели и систем дифференциальных уравнений 
видно, что рассматриваемая система с 5 степенями свободы может совершать пять независи-
мых гармонических колебаний, каждому из которых соответствует определенное значение 
собственной частоты. Известно, что максимумы амплитудно–частотных характеристик 
находятся вблизи собственных частот [1–4], Поэтому наличие спектра собственных частот 
дает возможность предсказать места максимумов значений амплитуд, и, наоборот, по 
максимумам можно определить собственные частоты системы. В реальных условиях при 
колебаниях автопоезда в такой системе практически содержится столько частот, сколько 
максимумов значений обобщённых координат проявляется во всех их диапазонах. Отсюда 
следует метод их определения.  
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Пусть на систему действует гармоническая сила частоты ω1 и эта частота совпадает с 

одной из частот собственных колебаний. Тогда амплитуды колебаний неограниченно 
возрастают и происходит явление резонанса. Когда частота ω1 близка к одной из 
собственных частот, то соответствующая амплитуда намного превышает все остальные.  

(8) 

(11) 
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автотракторные самосвальные прицепы семейства 2ПТС–4 позволяет отметить 
положительную тенденцию в части улучшения устойчивости движения прицепа в целом, что 
позволит в итоге добиться показателей предусмотренных ГОСТ 2349–54 и ГОСТ 13377–67  
используемых в данной области техники. 
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RESEARCH OF SPATIAL FLUCTUATIONS TWO–UNIT ROAD TRAIN 

 
Abstract. In the article the technique of analytical researches of spatial fluctuations of the two–link 

automobile train consisting of the car of the tractor and the two–axis trailer with use of the developed two mass 
settlement scheme having the real geometrical sizes allowing to define absolute displacements of the centers of gravity 
of the considered masses necessary for drawing up the equations of kinetic and potential energies of system with use of 
the second kind Lagrange is constructed is considered. As a result of the received differential equations and their 
solutions amplitude–frequency graphs allowing to establish resonant zones of fluctuations of links of a road train are 
constructed and technical solutions at the level of inventions increasing stability of the movement of the last are offered. 
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twitching. 

 
BIBLIOGRAPHY 

 
1. Glushchenko, A.D. Dinamika i prochnost transportnoj sistemy dlya perevozki legkovesnyh gruzov / A.D. 

Glushchenko, E.V. Slivinskij. –    Tashkent: Fan, 1988.– 116s. 
2. Zakin, YA. X. Prikladnaya teoriya dvizheniya avtopoezda / YA.H. Zakin Moskva: Transport,1987. – 286 s. 
3. Slivinskij, E. V. Issledovanie kolebanij i silovogo nagruzheniya traktornogo samosvalnogo pricepa 2PTS–4–

793A avtoref. dis. na soisk. uchyon. step. kand. tekhn. nauk. (05.20.01) / Slivinskij Evgenij Vasilevich; Kazah. 
selskohoz. inst. – Alma–Ata,  1977, –  23 s. 

4. Glushchenko, A. D., Issledovanie  kolebanij  i  silovogo  nagruzheniya  traktornogo  samosvalnogo pricepa 
2PTS–4–793A / A.D Glushchenko, YU.V. Grohovskij, E.V. Slivinskij.  ZHurnal Traktory i selhozmashiny. 1980. – № 
4. – S. 8–11. 
 
Slivinskij Evgenij Vasilevich
FGBOU VO «Eleckij 
gosudarstvennyj universitet im. I.A. 
Bunina», g. Elec 
Doktor. tekhn. nauk, professor, prof. 
kafedry «Tekhnologicheskih 
processov v mashinostroenii i 
agroinzhenerii», 
E–mail: evgeni_sl@mail.ru 

Radin Sergej YUrevich
FGBOU VO «Eleckij 
gosudarstvennyj universitet im. I.A. 
Bunina», g. Elec 
Kand. tekhn. nauk, docent, 
zaveduyushchij kafedroj 
«Tekhnologicheskih processov v 
mashinostroenii i agroinzhenerii» 
E–mail: radin81@mail.ru

Gridchina Irina Nikolaevna
FGBOU VO «Eleckij 
gosudarstvennyj universitet im. I.A. 
Bunina», g. Elec 
Kand. ped. nauk, docent. 
 

  



Фундаментальные и прикладные проблемы техники и технологии 

№ 2 (328) 2018 _________________________________________________________________ 93 

УДК 621.865.8 
 

Г.Н. КРАХМАЛЕВ 
 

КАЛИБРОВКА ИНСТРУМЕНТА ПРОМЫШЛЕННЫХ РОБОТОВ 
 

Аннотация. Рассмотрены математические модели систем управления промышленных роботов, 
позволяющие выполнить калибровку центра инструмента, закрепляемого на установочном фланце робота. 
Калибровка инструмента выполняется при оснащении промышленного робота новым инструментом. Первый 
этап калибровки состоит в определении центра инструмента (TCP – Tool Center Point). Второй этап 
включает действия по определению ориентации прямоугольной системы координат, связываемой с 
инструментом, начало которой помещается в TCP. Данная статья посвящена исследованию первого этапа 
калибровки инструмента. Рассмотрены методы распространённые в практике эксплуатации промышленных 
роботов. Представленные в статье результаты могут быть использованы при разработке программно–
математического обеспечения систем управления промышленными роботами.  

Ключевые слова: промышленные роботы, калибровка инструмента, математические модели, 
системы управления. 

 
Введение 
Комплекс мероприятий по оснащению робота новым инструментом предусматривает 

выполнение процедуры калибровки этого инструмента перед его использованием в работе. 
Это необходимо для того чтобы система управления промышленного робота могла 
правильно выполнять перемещение инструмента в рабочем пространстве робота. Для этого 
математические модели, описывающие преобразования координат в данной модели робота, 
должны быть дополнены математической моделью сформированной для установленного 
инструмента. Математические модели, описывающие преобразования координат для 
инструмента создаются системой управления автоматически при выполнении процедуры 
калибровки инструмента перед вводом нового инструмента в эксплуатацию. Созданные 
математические модели сохраняются в постоянной памяти контроллера системы управления 
в библиотеке инструмента с указанием логического имени, присвоенного данному 
инструменту. В последующем при программировании движения промышленного робота 
системе управления указывается устанавливаемый на роботе инструмент путём присвоения 
специальному параметру логического имени выбранного инструмента. 

Процедура калибровки инструмента выполняется в два этапа. Первый этап состоит в 
определении центра инструмента (TCP – Tool Center Point). Второй этап включает действия 
по определению ориентации прямоугольной системы координат, связываемой с 
инструментом, начало которой помещается в TCP. Данная статья посвящена исследованию 
первого этапа калибровки инструмента, а именно разработке математических моделей 
систем управления промышленных роботов, предназначенных для калибровки центра 
инструмента (TCP).  

Промышленные роботы представляют собой  многозвенные механические системы с 
последовательной структурой, звенья которых образуют друг с другом кинематические пары 
пятого класса и моделируются твёрдыми телами. Такие многозвенные механические 
системы называют манипуляционными системами. Пример манипуляционной системы 
промышленного робота KUKA KR6, имеющего шесть степеней подвижности, представлен на 
рисунке 1. На рисунке изображены контуры звеньев и шарниры с указанием осей 
относительного вращения соединяемых ими звеньев.  

К последнему звену манипуляционной системы промышленного робота может быть 
жестко присоединён инструмент. Для этого в конструкции последнего звена 
предусматривается присоединительный фланец. На рисунке 1 присоединительный фланец 
изображен в форме диска, внутри которого помещен шарнир, ось вращения которого 
перпендикулярна плоскости диска. В качестве инструмента может быть использовано 
захватное устройство, сварочная или измерительная головки, а также, например, мотор–
шпиндель. 

Системы координат 
Для описания относительного движения звеньев манипуляционных систем 

используют математические модели, обеспечивающие преобразование координат между 
системами координат, связываемыми с каждым звеном и системой координат, связываемой с 
неподвижным основанием. Существуют разные методы задания связанных со звеньями 
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Второй способ является метрологическим и основывается на прямых измерениях. 
Поскольку при установке инструмента точка центра установочного фланца, являющаяся 
началом системы координат FLANGE, оказывается закрытой и недоступной для прямого 
измерения, то измеряются координаты  )0(

*0
)0(
*0

)0(
*0 nnn zyx , являющиеся координатами точки 

0n* ≡ TCP в неподвижной системе координат S0 ≡ WORLD. Искомые координаты могут быть 
получены вычислением на основе математической модели полученной преобразованием 
выражения (2) 

                                       .)0(
*0

1
,0

)(
*0 nn

n
n rAr                                                                 (3) 

Калибровка базовым инструментом 
Данный метод позволяет выполнить калибровку нового инструмента на основе 

использования другого уже откалиброванного базового инструмента.  
Последовательность действий: 
1. На установочном фланце закрепляется ранее откалиброванный базовый 

инструмент. 
2. Системе управления промышленного робота указывается логическое имя базового 

инструмента. Выполняется ввод данных о TCP базового инструмента. 
3. TCP базового инструмента подводится к заостренному наконечнику, 

закреплённому в рабочем пространстве робота и в памяти контроллера системы управления 
сохраняются данные соответствующие значениям шарнирных координат. 

4. Базовый инструмент отводится от наконечника и снимается. Устанавливается 
новый инструмент. 

5. TCP нового инструмента подводится к тому же наконечнику и в памяти 
контроллера системы управления сохраняются данные соответствующие новым значениям 
шарнирных координат. 

6. Выполняется расчёт данных для TCP нового инструмента. Данные сохраняются с 
указанием логического имени нового инструмента. 

Математическая модель, обеспечивающая расчет данных для TCP нового 
инструмента по методу калибровки базовым инструментом может быть получена на основе 
рассмотрения уравнений, полученных на основе (2), для случая подвода к заостренному 
наконечнику TCP базового и нового инструментов (рисунок 2). 

Для базового инструмента в точке контакта его TCP с закрепленным наконечником 
может быть составлено уравнение 
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Для нового инструмента в точке контакта его TCP с закрепленным наконечником 
может быть составлено уравнение 
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Левые части уравнений (4) и (5) равны, так как представляю радиус–вектор одной и 
той же точки (острия наконечника) в неподвижной системе координат S0 ≡ WORLD, 
следовательно, равны и правые части этих уравнений 
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Окончательно математическая модель для калибровки центра инструмента 
промышленных роботов по методу калибровки базовым инструментом будет иметь вид 
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)2(  – расширенный радиус–вектор, содержащий координаты 
TCP нового инструмента в системе координат Sn ≡ FLANGE. 

Метод двух подходов 
По методу двух подходов TCP калибруемого инструмента дважды подводится к 

закрепленному наконечнику с разных сторон. 
Последовательность действий: 
1. На установочном фланце закрепляется калибруемый инструмент. 
2. TCP калибруемого инструмента подводится к заостренному наконечнику, 

закреплённому в рабочем пространстве робота и в памяти контроллера системы управления 
сохраняются значения шарнирных координат соответствующих данному положению 
манипуляционной системы робота. 
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3. Инструмент отводится и снова поводится к наконечнику с другого направления. 
Сохраняются значения шарнирных координат, соответствующих новому положению 
манипуляционной системы робота. 

4. Выполняется расчёт данных для TCP калибруемого инструмента. Данные 
сохраняются с указанием логического имени инструмента. 

Математическая модель, обеспечивающая расчет данных для TCP калибруемого 
инструмента по методу двух подходов может быть получена на основе рассмотрения 
уравнений, полученных на основе (2), для двух случаев подвода TCP калибруемого 
инструмента к закреплённому наконечнику. 

Для первого подхода 
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Для второго подхода 
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Разность уравнений (8) и (9) имеет вид 
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Элементы матриц составляющих левую часть уравнения (10) могут быть вычислены 
по зафиксированным значениям шарнирных координат в первом и втором подходах 
манипуляционной системы робота. Разность этих матриц представляет собой матрицу 
известной структуры 
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позволяющей представить уравнение (10) в виде 
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Матрично–векторное уравнение (12) может быть приведено к уравнению 
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Уравнения (11) и (13) представляют собой математическую модель для калибровки 
центра инструмента промышленных роботов по методу двух подходов. Координаты TCP 
калибруемого инструмента в системе координат Sn ≡ FLANGE могут быть определены 
численно, например, одним из методов решения систем линейных уравнений. 

Метод двух подходов может быть повторён несколько раз, а полученные результаты 
усреднены. Это позволит снизить влияние ошибки, связанной с неточностью 
позиционирования TCP калибруемого инструмента на закрепленном наконечнике. 

Заключение 
В настоящей статье рассмотрены математические модели для калибровки центра 

инструмента (TCP – Tool Center Point) промышленных роботов, соответствующие методам 
наиболее распространённым в практике эксплуатации промышленных роботов. Полученные 
математические модели могут быть использованы в системах управления промышленных 
роботов. Близкие по данной теме вопросы рассмотрены в работах [3–5]. Теоретические 
основы представлены в монографиях и учебниках [1–3, 7–10]. 
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G.N. KRAKHMALEV 
 

CALIBRATING THE TOOL OF INDUSTRIAL ROBOTS 
 

Abstract. Mathematical models of control systems of industrial robots are considered, allowing to perform the 
calibration of the tool center, fixed on the mounting flange of the robot. The tool is calibrated when the industrial robot 
is equipped with a new tool. The first step of the calibration is to determine the center of the tool (TCP – Tool Center 
Point). The second stage includes actions to determine the orientation of the rectangular coordinate system associated 
with the instrument, whose origin is placed in TCP. This article is devoted to the study of the first stage of calibration of 
the tool. The methods widely used in the practice of industrial robots are considered. The results presented in the article 
can be used in the development of software and software for control systems for industrial robots. 

Keywords: industrial robots; tool calibration; mathematical models; control systems. 
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УДК 622.647 
 

А.А. БОЖАНОВ, А.С. ТРУБИН, Ю.Н. БАРАНОВ 
 

К ОПРЕДЕЛЕНИЮ НЕКОТОРЫХ ПАРАМЕТРОВ  
ЛЕНТОЧНЫX КОНВЕЙЕРОВ 

 
Аннотация. Статья посвящена вопросам  разработки теории, расчета и конструирования мощных 

ленточных конвейеров. Центральной проблемой статьи является определение основных параметров 
конвейерных установок для транспортирования грузов вверх и вниз при различных углах наклона их к гори-
зонту. Даны рекомендации по снижению величины знакопеременных напряжений на роликоопорах 
стационарных ленточных конвейеров, обобщен анализ динамических исследований, поставлена и успешно 
решена актуальная задача определения максимального статического и динамического усилия, возникающего в 
ленте конвейера в период пуска и нахождения условий, позволяющих свести эти усилия до минимума, получена 
формула для определения и анализа максимального динамического усилия в точке набегания ленты на 
приводной барабан при различных углах наклона конвейера к горизонту. Установлено, что максимальное 
динамическое усилие ленты конвейера с предельной длиной в пусковой период находится в функциональной 
зависимости от угла наклона их к горизонту. 

Ключевые слова: ленточный конвейер, расчет, параметры, производительность. 
 
Введение 
Наиболее перспективным направлением в развитии промышленного транспорта 

является его полная конвейеризация, обеспечивающая поточность и автоматизацию 
транспортных операций. 

Важное место в числе транспортных средств занимают ленточные конвейеры, 
которые в силу простоты устройства и обслуживания, обеспечения высокой производи-
тельности и дальности перемещения материалов имеют большие достоинства перед другими 
видами непрерывного транспорта. 

Обзор области применения ленточных конвейеров большой мощности показывает, 
что в настоящее время еще недостаточно проведена конвейеризация различных отраслей 
промышленности РФ, связанных с большими грузопотоками. Между тем технико–
экономический анализ ленточных конвейеров по сравнению с другими видами транспорта 
показал большую эффективность их применения. 

Основная часть 
В вопросах разработки теории, расчета и конструирования ленточных конвейеров 

большая заслуга принадлежит нашим соотечественникам [1–3, 5, 8]. Благодаря мощному 
заделу: усилиям больших коллективов институтов, кафедр, успешным исследованиям 
отдельных ученых, теория ленточного конвейера оформилась в самостоятельную науку. 

Однако следует отметить, что ученые вплотную занимались в основном 
исследованиями ленточных конвейеров общего назначения. Проблемы теории, расчета и 
проектирования высокопроизводительных конвейеров большой длины предметом 
исследования стали относительно недавно. 

Одним из вопросов, представляющих большой практический интерес является 
определение основных параметров конвейерных установок для транспортирования грузов 
вверх и вниз при различных углах наклона их к горизонту: 

а) предельной длины конвейера на один привод; 
б) расстояния между роликоопорами рабочей ветви ленты конвейера (в условиях 

высокопроизводительных коротких и длинных конвейерных установок); 
в) стоимости ленты и конвейерных установок. 
При транспортировании материалов вверх по произвольно искривленной трассе (с 

прямолинейными участками, имеющими различные углы наклона), получено: 

пр૚ࡸ ൌ
࢞ࢇ࢓ࡿ

൫∑ࢃрା࢑૚∙∑࢞ࢃ൯ࢻ࢑
, м;                                                    (1) 

пр૚ࡸ ൌ
࢔࢏࢓ࡿି࢞ࢇ࢓ࡿ

рࢃ∑
, м.                                                         (2) 

Из уравнений (1, 2) видно, что предельная длина конвейера ࡸпр при определенной 
производительности и угле наклона установки ࢼ, находится в функциональной зависимости 
от тягового фактора привода ࢻࣆࢋ и может изменяться теоретически в широких пределах 
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࢑૚ ൏ ࢻࣆࢋ ൑ ൅∞.	
Принимая определенную схему привода, можно определить оптимальную длину 

конвейера в зависимости от ࢻࣆࢋ пo формуле (1), соблюдая только условие «проскаль-
зывания». Исключение фактора провеса ленты при этом очевидно потребует специального 
расчета расстояний между рабочими роликоопорами. 

Известно, что в настоящее время расстояния между роликоопорами принимаются по 
ширине ленты, в действительности их величина должна определяться в зависимости от 
натяжения ленты [4]. 

В связи с этим данному вопросу посвящены специальные исследования, в результате 
чего получена зависимость (3) для нахождения величины lp, длиной менее 100–200 м: 

݈௣ ൌ ࢞ࢇ࢓ࡿ ∙
௞೘

ௐпр௞пр
, м.                                                 (3) 

При огибании лентой барабанов и опорных роликов, возникают изгибные 
напряжения, снижающие прочность ленты (происходит расслаивание прокладок и в 
конечном результате – разрыв ленты). 

Поэтому для снижения величины знакопеременных напряжений на роликоопорах 
стационарных ленточных конвейеров и уменьшения частоты их возникновения, необходимо 
увеличить натяжение ленты и принять переменные расстояния между роликоопорами по 
длине конвейера. 

В связи с этим были проведены исследования, в результате чего получена 
зависимость (4) для определения этого параметра, и решены вопросы расстановки 
роликоопор рабочей ветви конвейера: 

݈௫భ ൌ
࢞ࢇ࢓ࡿ
ௐпр

൤1 െ
ௐ೛

ᇲ

ௐ೚೤
ᇲ ∙௞ഀ

൬1 െ
௫భ
௟пр
൰൨, м.                                         (4) 

На практике приходится сталкиваться и с другой задачей: при заданной длине трассы 
определить основные параметры установки. 

В данном случае можно принять, что ࡸпр = ࡸтр, тогда по формуле (1) можно 
определить натяжение ленты и произвести прочностной расчет с последующим расчетом 
расстояний ݈௣ по приводимой методике. 

Вопрос о возможности повышения производительности ленточных конвейеров, 
увеличения предельной длины и скорости транспортирования материалов связан с изуче-
нием сложных динамических явлений, возникающих в пусковом периоде [6, 7]. 

Анализ выполненных динамических исследований показывает, что: 
– в одних случаях, работы, посвященные методам определения динамических усилий 

конвейерных лент в пусковой период, или не учитывают упругие свойства тяговых органов 
ленточных конвейеров, или не учитывают рассеивание энергии и затухание колебаний; 

– в других исследование динамики пуска ленточных конвейеров проводится с учетом 
рассеивания энергии и затухания колебаний при произвольно выбранном законе изменения 
скорости движения ленты при пуске конвейера, но не учитывается влияние массы ленты и 
возмущающей силы на характер колебательного процесса; 

– в основу динамического анализа конвейерных лент в третьей группе работ принята 
возмущающая сила. Исследования проводятся с учетом приведенной массы тягового органа 
и привода конвейера, но в условиях эксплуатации мощных ленточных конвейеров с 
автоматическими натяжными устройствами, изменяющими натяжение ленты в период пуска, 
очевидно, нужно включать и массу натяжного устройства; 

– приводимые методы не позволяют анализировать изменение динамических усилий 
ленты одновременно при различных углах наклона конвейерных установок. 

Таким образом, в основу динамического анализа мощных ленточных конвейеров при 
различных углах наклона их к горизонту можно принять возмущающую силу и исследование 
проводить с учетом упругости тягового органа и приведенных масс всех вращающихся и 
поступательно движущихся частей конвейера (привода, полотна и натяжного устройства) [9, 
10]. 

Одним из важнейших вопросов при расчете и конструировании машин является 
определение полных расчетных нагрузок, воспринимаемых их элементами. 

Если статические нагрузки ленточных конвейеров можно определить довольно легко, 
то расчет динамических усилий вызывает определенные трудности. 
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В связи с этим актуальной является задача определения максимального Sсумм 
(статического и динамического) усилия, возникающего в ленте конвейера в период пуска и 
нахождения условий, позволяющих свести эти усилия до минимума. 

Одним из основных органов конвейерных установок является лента. Все сечения 
ленты на обеих ветвях в один и тот же момент времени имеют различные скорости и 
ускорения. Поэтому кинематические параметры реальных конвейерных лент являются 
функцией не только времени, но и положения сечения. 

Благодаря действию возмущающих сил привода и упругим свойствам тягового органа 
конвейера, колебательный процесс ленты сопровождается возникновением в ней 
динамических усилий. 

Для анализа этих усилий в конвейере необходимо предварительно составить 
расчетную механическую схему. Реальный механизм конвейера с натяжным устройством у 
привода заменим эквивалентной приведенной схемой, обладающей таким же энергетическим 
запасом. 

Тогда задача сведется к расчету приведенной системы, состоящей из бесконечного 
числа распределенных и двух сосредоточенных масс. 

Распределенные массы системы соответствуют поступательно движущимся частям 
конвейера (рабочей и нерабочей ветви ленты), а сосредоточенные – массам привода и 
натяжного груза соответственно с приводным и натяжным барабаном (сосредоточенные 
массы опорных роликов включаются в распределенные массы ленты). 

Местом приведения сосредоточенных масс выбраны точки набегания (х = l) и 
сбегания (x = 0) ленты с приводного барабана. 

Известно, что исследование процесса разгона мощных ленточных конвейеров 
проводилось при следующих допущениях: 

1. Отсутствует пробуксовка ленты по приводному барабану и отсутствует трение в 
механизмах натяжного устройства. 

2. Длина ленты принимается постоянной.  
3. Система консервативная, что позволяет не учитывать затухание колебаний от 

внутренних и внешних сил. 
4. На систему воздействует постоянная возмущающая сила F0, равная по величине 

первоначальному максимальному значению избыточной силы. 
Экспериментальные исследования упругих свойств многопрокладочных лент 

конвейеров показывают, что между деформацией ленты и ее натяжением можно принять ли-
нейную зависимость.  

Так как к линейным системам применим принцип наложения, то динамический 
анализ конвейеров в работе проводится в условиях и собственных, и вынужденных коле-
баний ленты. 

Метод решения поставленной задачи состоит в определении величины деформации 

стержня 
࢛ࢊ

࢞ࢊ
 при известной его жесткости Е0. 

В этом случае динамическая нагрузка стержня, зависящая от времени и координаты, 
представляется формулой 

дࡿ ൌ ૙ࡱ
࢛ࢊ

࢞ࢊ
.                                                              (5) 

В такой постановке упругая система описана волновым уравнением 
૛࢛ࢊ

૛࢚ࢊ
െ ૛ࢇ ࢊ

૛࢛

૛࢞ࢊ
ൌ ૙.                                                         (6) 

Таким же уравнением описываются продольные колебания стержня. 
Процесс разгона системы условно разделим на два этапа: от начала движения массы 

 ૛ и от начала движения всей системы до окончания࢓ ૚ до начала движения массы࢓
процесса разгона. 

На первом этапе осуществляется процесс деформации упругого звена, и при 
достижении этой деформацией определенного значения начинается второй этап, когда вся 
система приходит в движение. 

Решение уравнения ࢛~࢛ሺ࢞૚࢚ሻ для первого этапа выполнено методом Даламбера 
ሻݐଵݔሺݑ ൌ ߮ଵሺܽݐ െ ሻݔ ൅ ߮ଶሺܽݐ ൅  ሻ                                             (7)ݔ

при нулевых начальных и соответствующих граничных условиях. 
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Для второго этапа решение уравнения (7) представлено в виде: 
࢛ሺ࢞૚࢚ሻ ൌ ࢛૛ሺ࢞૚࢚ሻ ൅ ࢛૚ሺ࢞૚࢚ሻ,                                                  (8) 

где  ݑଵሺݔଵݐሻ и ݑଶሺݔଵݐሻ – перемещения сечений стержня при его собственных и 
вынужденных колебаниях. 

Перемещения ݑଵሺݔଵݐሻ и ݑଶሺݔଵݐሻ определены методом Фурье и обобщенных координат 
при определенных начальных и граничных условиях. 

В результате этого получена формула для определения и анализа максимального 
динамического усилия в точке набегания ленты на приводной барабан при различных углах 
наклона конвейера к горизонту: 

дࡿ ൌ
૛࢜ೌࣅ

࢖࢚
ߟ ൤݉ଵ ൅݉ଶ ൅

ଶௌ೘ೌೣ

ௐ೚೤∙௞ഀ
 ൨, м.                                          (9)ߩ

Из уравнения (9) видно, что максимальное динамическое усилие ленты конвейера с 
предельной длиной в пусковой период находится в функциональной зависимости от угла 
наклона их к горизонту. 

Так как величина 
૛࢜ೌ
࢖࢚

 является начальным максимальным ускорением при изменении 

скорости разгона электродвигателя по квадратичной параболе, что соответствует работе 
асинхронного двигателя с контактными кольцами при трех пусковых ступенях, то, обозначив 
его через ࡿ௤ окончательно получим: 

дࡿ ൌ ߣ ∙ ݆ ∙ ߟ ∑݉௖.                                                     (10) 
Заключение 
Полученные формулы анализированы на примерах расчета максимальных 

динамических усилий в ленте. В результате установлено, что в пусковых режимах 
динамические усилия в ленте соизмеримы со статическими. 
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A.A. BOZHANOV, А.S. TRUBIN, Yu.N. BARANOV 
 

TO DETERMINING SOME PARAMETERS 
BELT CONVEYORS 

 
Abstract. The article is devoted to the development of theory, calculation and design of powerful belt 

conveyors. The central problem of the article is the determination of the main parameters of the conveyor systems for 
the transportation of goods up and down at different angles of inclination to the horizon. Recommendations are given to 
reduce the magnitude of alternating stresses on rollers of stationary belt conveyors, generalize the analysis of dynamic 
research, set and successfully solved the actual problem of determining the maximum static and dynamic forces 
occurring in the belt of the conveyor during the start–up period and finding conditions for reducing these efforts to a 
minimum, a formula is obtained for determining and analyzing the maximum dynamic force at the point where the tape 
hits the drive drum at various angles of inclination to conveyor to the horizon. It is established that the maximum 
dynamical force of the conveyor belt with the limiting length in the starting period is in functional dependence on the 
angle of their inclination to the horizon. 

Keywords: belt conveyor, calculation, parameters, productivity. 
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УДК 621.822.18 
 

Р.Н. ПОЛЯКОВ, М.Э. БОНДАРЕНКО 
 

РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ РАСЧЕТА ГЛАВНОГО 
ВЕКТОРА РЕАКЦИИ ЛЕПЕСТКОВОГО ГАЗОДИНАМИЧЕСКОГО 

ПОДШИПНИКА С АКТИВНЫМ УПРАВЛЕНИЕМ 
 

Аннотация: В статье приведена конструкция комбинированного подшипникового узла с активным 
управлением, включающей в себя лепестковый газодинамический подшипник (ЛГДП) и подшипник качения, 
установленные по последовательной пространственной схеме, и электромагнит, управляющий рабочим 
зазором ЛГДП. Также в работе рассматриваются основные математические соотношения для расчета полей 
давлений и главного вектора реакции ЛГДП.  

Ключевые слова: подшипник качения, лепестковый газодинамический подшипник, комбинированная 
опора, поле давлений. 

 
Введение.  
Тенденция повышения энергоэффективности машин является причиной повышения 

скоростей вращения элементов машин и повышению вибронагрузок, что приводит к 
безальтернативному использованию подшипников скольжения, в частности лепестковых 
газодинамических подшипников (ЛГДП). Однако, при частых пусках–остановах машин 
лепестки ЛГДП подвержены повышенному износу. Одним из направлений решения данной 
проблемы является комбинация подшипника качения и ЛГДП, что позволяет разделить их 
функции работы и добиться оптимального сочетания полезных свойств каждого из вида 
опор. Включение в конструкцию комбинированной опоры управляющего элемента, который 
в виду малой массы и податливости лепестков, позволяет изменять профиль рабочего зазора 
в соответствии с режимом работы узла и управлять жесткостными характеристиками опоры. 
Изменение жесткостных характеристик в процессе работы узла также позволяет 
преодолевать критические частоты, что, безусловно, повышает надежность и 
работоспособность подшипникового узла. 

Основная часть. 
Авторами предлагается конструкция комбинированной опоры, изображенной на 

рисунке 1. Комбинированная опора состоит из корпуса 1, в котором установлены подшипник 
качения 2, в подшипнике качения 2 закреплена втулка 3 с металлическими пластинами 4, 
которые служат элементами центрирования вала 5. По окружности в корпусе 1 закреплены 
электромагнитные катушки 6. Для стопорения внутреннего кольца на основном режиме 
работы комбинированной опоры установлены пьезоэлементы 7 [1]. 

Устройство работает следующим образом: в начальный момент времени передача 
нагрузки с вала 5 на корпус 1 осуществляется через металлические пластины 4 и тела 
качения подшипника качения 2. По мере возрастания скорости вращения вала 5 на 
электромагнитные катушки 6 и пьезоэлементы 7 подается напряжение. Возникает 
электромагнитное поле, которое отгибает пластины 4 от поверхности вала 5, при этом между 
пластинами 4 и валом 5 образуется воздушный зазор, в котором возникает газодинамическая 
сила, которая центрирует вал и воспринимает внешнюю нагрузку. Внутреннее кольцо 
подшипника качения 2 стопорится пьезоэлементами 7 с торцевых сторон, таким образом, 
подшипник качения 2 выключается из работы. При остановке происходят обратные 
процессы. При этом повышается устойчивость вращения ротора за счет повышенного 
демпфирования со стороны упругих металлических пластин [2]. Более подробный принцип 
работы комбинированной опоры описан в предыдущих статьях авторов [2–4]. 

Определение силовых факторов в ЛГДП, таких как XR  и yR , основывается на 

определении полей давлений p(х, z), которое основывается на базовых уравнениях 
гидродинамической теории смазки [5, 6]: уравнения Рейнольдса, записанного для случая 
двумерного течения вязкого сжимаемого смазочного материала и суммарной деформации 
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R.N. POLYAKOV, M.E. BONDARENKO 

 
DEVELOPMENT OF THE MATHEMATICAL MODEL OF CALCULATION 

OF THE MAIN VECTOR REACTION OF A LIPESTIC GAZODYNAMIC 
BEARING WITH ACTIVE CONTROL 

 
Abstract: The article presents the design of a hybrid bearing with actively adjustable radial gap of a gas foil 

bearing. The hybrid bearing is a combination of a ball bearing and gas foil bearing with speed separation. 
Electromagnetic coils are placed on the bearing housing. The present paper considers basic aspects of development of 
a mathematical model of pressure field of foil bearing and the main vector of reaction. 

Keywords: bearing, foil bearing, hybrid bearing, pressure field. 
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УДК 519.115 
 

В.Ф. БУЛАВИН, Т.Г. БУЛАВИНА, В.В. ЯХРИЧЕВ 
 

ИНЖЕНЕРНЫЙ АНАЛИЗ И НОВЫЕ ТЕХНОЛОГИИ  
В МЕТОДЕ КОНЕЧНЫХ ЭЛЕМЕНТОВ 

 
Аннотация. Математическим аппаратом для исследования служит формула Грина.  В работе 

получено решение для континуального множества элементных матриц жесткости линейного конечного 
элемента. Континуальная модель конечного элемента содержит в своем составе, как классическое решение, 
так и ряд универсальных. Верификация результата базируется на принципе аналогий с электрической цепью. 
Основное отличие полученных соотношений заключается в возможности снять любые ограничения на форму 
конечных элементов благодаря соответствующему выбору элементной матрицы жесткости и базисной 
функции. Обусловленность конечно–элементной системы уравнений при использовании универсальных решений 
улучшается, что повышает в итоге достоверность проводимых расчетов при заданной методологической 
погрешности. Теоретические выводы сопровождаются контрольным примером. 

Ключевые слова: формула Грина, метод конечных элементов, матрица жесткости, аппроксимация, 
обусловленность системы уравнений. 

 
Введение 
Метод конечных элементов (МКЭ) является одним из ведущих инструментов 

исследования вопросов механики твердого тела, физические процессы в которых 
описываются дифференциальными уравнениями в частных производных. 

Процесс триангуляции расчетной области поля приводит к появлению шаблонов 
разнообразной формы, среди которых в зонах развитой геометрии появляются тупоугольные 
фрагменты или их объемные аналоги в случае 3D–измерения. Хотя в аппарате МКЭ имеются 
элементы высокого порядка аппроксимации, однако, как правило, в программных продуктах 
реализованы вычислительные алгоритмы для симплекс–элементов. Тупоугольные линейные 
фрагменты обуславливают неконтролируемую погрешность решения, что в итоге снижает 
достоверность результатов инженерного анализа.  

Математической моделью конечного элемента (КЭ) является элементная матрица 
жесткости (МЖ). Современная парадигма МКЭ не оперирует множественностью модели КЭ. 
Вызовом работы является доказательство существования континуального множества МЖ 
для симплекс–элемента, где  имеются альтернативные возможности, обладающие новыми 
свойствами, при отсутствии недостатков присущих классической концепции [1,2,3]. 

Цель работы – найти решения, которые свободны от указанного недостатка и 
одновременно улучшают вычислительные свойства конечно–элементных уравнений. 

Классическая теория 
Рассмотрим на плоскости неоднородную область D , ограниченную контуром D , 

поле в которой описывается через скалярную функцию (N).  Требуется  найти  решение, 
удовлетворяющее уравнению 

 N ( ρ)gradμdiv  ;   Dyx,N  ;    


,M
D

,     (1) 

где    материальная характеристика среды. 
Численное решение уравнения (1), например, в проекционной форме может быть 

получено из условия ортогональности невязки [4] базисным функциям 
j , т.е. из уравнений: 

    dDud
D

jN 0 ρgraμ div   ;  N,1,2..,j                         (2) 

где    


N

j
jjN

ayxu
1

),(    приближенное решение.  

Редукция (2) приводит к системе алгебраических уравнений относительно искомых 
величин, что дает  решение исходной задачи.  
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Классический подход получения функций формы 
Выделим для  анализа КЭ в виде треугольника произвольного вида при условии, что 

узлы располагаются согласно модели Паскаля [4,5,6]. Традиционный подход состоит в 
использовании полиномиальной функции для приближенного решения. В пределах каждого 
КЭ для скалярной функции используется аппроксимация вида:  

..),( .2
5

2
43210   yy xxyxyx , 

где  коэффициенты k определяются через значения полевой функции в узлах шаблона.  
Для линейного КЭ (рисунок 1) аппроксимация вида  

yxyx 210),(                                                              (3) 

дает для базисной функции и функций формы результат в виде: 

mmjjii NNNyx  ),( , 













c

i hc

yc

c

x
N       21 ;   












c

j hc

yc

c

x
N 1 ,   

c
m h

y
N  ;   1 mji NNN . 

Классическое определение элементной МЖ может быть осуществлено из (2) или, 
например, из минимума энергетического функционала [4,5,6]. Во всех случаях результат в 
базисе (x,y) имеет вид: 

  

h
        

hc

c
         

hc

c
   

chc
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21
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c11

1

, 

где  c1 и c2  отрезки, на которые делит высота hc сторону длина которой  «с»; 
S  площадь треугольного симплекс–элемента. 
Синтез линейных базисных функций на основе формулы Грина 
Рассмотрим вопрос построения базисных функций с помощью интегрального 

соотношения   формулы Грина: 

         
S

R
M

Rn
Μ

Rn

M
Ν 

NMDNMNMD
d

1
ln

μ
ρ

 dl
1

lndl
1

ln2
D





















 















; (4) 

   22 yxRNM  ;    D yx,N  .      

Примем  локальную систему координат как показано на рисунке 1 и рассмотрим 
построение конечно–элементной схемы на базе соотношения (4). Допустим, что среда в 
пределах  КЭ  является однородной и изотропной. 

Аппроксимируя скалярную функцию вдоль сторон треугольника линейными 
зависимостями (при соблюдении условия  

D
0d)(grad  ,    касательное направление 

вдоль контура), примем const)(grad n  (n  направление внешней нормали к контуру) на 

каждом из ребер. Выполним интегрирование в квадратурах контурных интегралов, с 
использованием трех локальных систем координат, ассоциированных со сторонами 
треугольника. 

Логистика преобразований направлена на формирование соотношений, 
представляющими, с одной стороны, разностный аналог фундаментального тождества: 

 


 

 











 0 ρпри

при0
d

      q

0          
l

n

Μ

D

,                                    (5) 



№ 2 (328) 2

а с друго
значениях
учета расп
трех инвар

   2

где  , 
(рисунок 1

Пер
(a,a),  св
и обратны

Зна

в (6) коорд
 

Реш
о средне
окружност

По
Лин

приводит 
Выполнен
Таким обр
где h=ma
инвариант

Уч
Нал

дополните

2018 _____

ой стороны
х величин l
пределенны
риантных р

 Ν














,    угл
1). 
реход  от  б
вязанного с
ые. 

ачения про

динаты узл

шение (6) у
м. Действ
ти, приход
грешность
нейная апп
к линейн

ние операци
разом, мож
ax(a,b,c). О
тами, имеет
ет источни
личие пов
ельно краев

Фу

__________

ы  подчине
n(ri), ln(rj) и
ых поверхн
решений: 

y
n

c












лы, под ко

базиса (x,y)
со стороно

изводных 

ловых точе

Рисуно

удовлетвор
вительно, 
им к тожде
ь результа
проксимац
ной зависи
ий интегри
жно утверж
Однако ли
т погрешно
иков поля
верхностны
вой задачи

ундаментал

__________

ена требов
и ln(rm) (ри
ностных и

x
c

ij 



















a

n

оторыми из

) к базисам
й треуголь

c
n 











 ,  




к. 

ок 1  Модель

яет услови
подставив
ественному
ата 
ия скалярн
мости от 
ирования в
ждать, что 
инейная б
ость O(h2).
 
ых источни
: 

льные и пр

__________

ваниям вып
исунок 1). О
сточников 

i















 i

a a

з точки N

м (b,b), св
ьника «а», 

b
n 











 , 




ь КЭ в виде с
 

ию  основно
в в итого
у результат

ной функц
координат

в квадратур
погрешнос

базисная ф

иков поля

икладные п

__________

полнения э
Окончатель
поля в ко

n
b














 




a
m

  D yx,   в

язанного с
 осуществл

a
n 











 на

симплекс–эле

ой теоремы
овое соот
ту. 

ции на кон
т решения 
рах  повыш
сть результ
функция, п

я приводи

проблемы т

__________

этих соотн
ьно приход
онтуре КЭ)

b
m

b










m ,      

видны отре

о стороной
ляется чере

а контуре К

емента 

ы теории по
ношение 

нтуре КЭ 
во всех 

шает эту оц
тата (6) оц
представле

ит к необх

техники и т

__________

ношений п
дим к резул
) в виде ко

jb
j 



                

езки интег

й треугольн
ез матрицы

КЭ найдем, 

 

отенциала 
координат

(погрешно
точках об
ценку на од
ценивается 
енная в (6

бходимости

технологии

_______ 111

при любых
льтату (без
омбинации

 j 





 

           (6)

грирования

ника «b», и
ы перехода

подставив

 теоремы
ты центра

ость O(h2))
бласти КЭ.
дин пункт.
как O(h3),

6) своими

и решения

и 

1 

х 
з 
и 

) 

я 

и 
а 

в 

ы 
а 

) 
. 
. 
, 
и 

я 



Машиноведение и мехатроника 

112 ______________________________________________________________________ № 2 (328) 2018 
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                                   22 yxR NM  ;    D yxN , .    (7) 

Приближенное решение (7), в рамках линейного распределения скалярной функции, 
может быть найдено при аппроксимации подынтегральных выражений усредненными 
значениями (с погрешностью O(h) относительно производной скалярной функции):  
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Для произвольной точки   D yx,N   тривиальный ответ (x,y)=0 может быть 
получен, если принять решение в виде: 
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где  i  весовые коэффициенты, такие что 0i ; 1321   . 

Весовые коэффициенты  i  из (8) должны быть согласованы с положением точки 
N(x,y). Выполнить последнее требование можно, если воспользоваться L  координатами 
[4,5,6], и принять 

 31 L 
h

y

c
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b

b

h


 ;   23 L
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h
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
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Окончательный результат следует рассматривать как решение для симплекс–элемента 
на основе формулы Грина. Структура соотношения (6) показывает, что, силу произвольного 
выбора точки N(x,y), её следует рассматривать как суперпозицию инвариантных решений, в  
трех локальных системах координат, связанных со сторонами КЭ. Таким образом, 
подпространство линейных базисных функций симплекс–элемента представлено тремя 
базисными функциями из (6), коэффициенты которых определяются из граничных условий 
[4,5,6]. 

Конечно–элементная практика расчетов при математическом описании состояния 
каждого КЭ строится на базе использования только одной из трех базисных функций.  

Континуальная матрица жесткости  симплекс–элемента 
В логистике решения уравнений (4), а также в последующих преобразованиях 

составной частью является  формулировка справедливых для  любых значений ln(ri), ln(rj) и 
ln(rm) соотношений 
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которые пропорциональны в линейном приближении разностному аналогу интегрального 
тождества (5) для трех подобластей Si, Sj, Sm,, с диагоналями ri, rj, rm и общей точкой 
  D yxN ,  (рисунок 2). 
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Однако значение * лежит вне контура треугольника и не является элементом 
линейной оболочки рассматриваемого КЭ, что в свою очередь нарушает условие финитности 
базисной функции. Эта величина может быть  найдена только из соседнего шаблона. Иначе, 
эта аппроксимация, удовлетворяя исходному уравнению (4) и краевым условиям, не является 
при этом решением задачи о распределении полевой функции на КЭ. Следовательно, в 
системе координат (x,y) для симплекс–элемента не может быть построена финитная базисная 
функция [1,2,3]. 

Сказанное выше является второй причиной, препятствующей использованию 
тупоугольных фрагментов в классической интерпретации МКЭ. Таким образом, такой  
выбор частного решения из (6) не возможен, так как приводит к неконтролируемой 
погрешности. 

Ситуация разрешима если воспользоваться частным решением из (6) в локальной 
системе координат, связанной со стороной «a», (рисунок 4,б). Здесь в осях (,) финитная 
функция выглядит следующим образом: 
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В последнем случае все величины, входящие в определение базисной функции, принадлежат 
линейной оболочке треугольника. 

Окончательно рекомендации по возможности использования тупоугольных 
фрагментов в методе конечных элементов можно сформулировать следующим образом 
[1,2,3]: 

 для тупоугольных КЭ базисная функция должна быть выбрана в локальной системе 
координат, связанной с самой длинной из сторон КЭ; 

 градиенты следует вычислять из указанной  базисной функции; 
 в качестве центральной точки N(x,y), относительно которой рекомендуется 

вычислять МЖ, следует выбрать либо центр тяжести, либо центр вписанной в КЭ 
окружности, которые всегда лежат внутри контура КЭ при любой его форме. 

Высказанные замечания позволят в процессе реализации МКЭ снять любые 
ограничения по форме КЭ и тем самым расширить его возможности. Методологическая 
погрешность решения, при выполнении указанных замечаний, всегда будет сохраняться на 
уровне O(h2), где h=max(a,b,c). 

Верификация концепции континуальной матрицы жесткости 
Вызовы статьи требуют сравнительной оценки на тестовом примере концептуальной 

и классической реализаций МКЭ и анализа итоговых результатов. План вычислительного 
эксперимента включает получение аналитического решения совместно с расчетами на основе 
классической реализации МКЭ, выступающими в качестве контрольных значений. В 
противопоставление этим данным ставятся решения на основе концепции о континуальности 
матрицы жесткости. 

В качестве контрольного материала использована задача о кручении цилиндрического 
стержня некругового сечения, для которого в [8] приведено «ручное» решение. Расчетная 
модель в виде 1/8 части исходной области показана на рисунке 5,а. На рисунке 5,б 
представлены два варианта конечно–элементной сетки: стандартный в виде прямоугольных 
треугольников (сплошные линии) и нестандартный (пунктирные линии). Особенностью 
второго разбиения является наличие трех тупоугольных фрагментов. Шаблоны такого вида 
всегда встречаются при автоматическом разбиении расчетной области поля сложной 
геометрии.  

Искусственно усложненная ситуация во втором варианте, при наличии трех 
тупоугольных фрагментов (элементы 1, 3 и 4), ставит целью проверки концепции 
континуальной МЖ в экстремальных условиях. Вывод по статье не позволяет использовать 
классическую МЖ для указанных КЭ, а, следовательно, провести расчет в целом. Авторы 
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где  G=0,8107 [H/Cм2]  модуль сдвига материала; 

=
100

1

180



[рад/См]  угол закручивания на единицу длины.  

Все исходные данные взяты из [8]. Итоговые результаты вычислительного 
эксперимента на стандартной сетке приведены в таблице 1. 

 

Таблица 1  Результаты расчета тестовой задачи (вариант 1) 

Номер 
узла 

Точное 
решение 

Решение  
из [8] 

Решение 
при 

построении 
МЖ для 
точки  О 

Решение 
при 

построении 
МЖ для 
точки  P 

Решение 
при 

построени
и МЖ для 
точки G 

Решение 
при 

построении 
МЖ для 
точки H 

Решение 
при 

построении 
МЖ для  
точки Q 

 1 2 3 4 5 6 7 

1 205,6 218,04 196,4 218,12 210,12  213,62 

2 160,0 159,9 152,72 141,8 147,27  144,9 

4 126,4 123,56 119,99 141,8 132,32  136,44 

Число обусловленности глобальной МЖ  

  10,89 10,89 6,31 7,51  6,9 

 
Комментарии к таблице 1 
Различие результатов в столбцах 2 и 3 носит принципиальный характер: при 

одинаковых элементных и глобальной МЖ имеет место несовпадение правых частей 
конечно–элементной системы уравнений. Причина этого кроется в принципе  их 
формирования. Каковы бы не были доводы в пользу классического подхода и как бы 
убедительно они не звучали, их нельзя противопоставить фундаментальной теореме поля 
(5), которая требует иного решения, приводя к консервативному результату. 

Итоговые результаты вычислительного эксперимента на нестандартной сетке 
приведены в таблице 2. 

 

Таблица 2  Результаты расчета тестовой задачи (вариант 2) 

Номер 
узла 

Точное 
решение 

Решение  
из [8] 

Решение 
при 

построении 
МЖ для 
точки  О 

Решение 
при 

построении 
МЖ для 
точки  P 

Решение 
при 

построении 
МЖ для 
точки G 

Решение 
при 

построении 
МЖ для 
точки H 

Решение 
при 

построении 
МЖ для  
точки Q 

 1 2 3 4 5 6 7 

1 205,6 132,0  253,6 184,77  197,04 

*
2 176,9 92,16  192,89 137,37  147,1 

4 126,4 65,68  187,04 120,64  137,94 

Число обусловленности глобальной МЖ 

  2,09  6,18 5,74  5,85 

 
Комментарии к таблице 2 
Решение в столбце 2 получено по классической технологии МКЭ. Этот результат 

вступает в противоречие, как на этапах формирования, так и окончательном виде  с 
формулой Грина и интегральным тождеством (5) и приводится здесь по принципу «как 
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есть». Неконтролируемая погрешность, обусловленная некорректностью математической 
модели КЭ в классической постановке, является фактором недостоверности результата в 
случае тупоугольного фрагмента [9,10].  Отсутствие результата в 3 столбце также означает, 
что для тупоугольного шаблона точка О лежит за контуром КЭ и для элементов 1, 3 и 4 МЖ 
не существует. 

Результаты анализа показывают, что обусловленность конечно–элементной системы 
уравнений при альтернативной технологии в формировании математической модели КЭ 
оказывается заметно лучше во всех проведенных расчетах. Предложенный алгоритм 
образования сечений  рассматривается в качестве пилотного и должен быть апробирован  на 
других примерах, возможно, с дальнейшей модификацией. В целом, как указывает автор [8, 
стр.92], «четырех элементов мало для получения приемлемой точности решения, но 
достаточно для иллюстрации». 

Заключение 
1. Математический аппарат формулы Грина дает возможность получить семейство 

решений для МЖ симплекс–элементов, которые имеют нестандартные формы. Общее число 
таких решений образует континуальное множество. 

2. Алгоритм формирования континуальной МЖ основан на теореме теории поля. 
3. Возможность применения тупоугольных линейных КЭ определяется рациональным 

выбором базисных функций. Использование таких фрагментов упрощает стратегию 
автоматического разбиения области поля на КЭ и позволяет точнее аппроксимировать 
границы сложной  конфигурации. 

4. Альтернативные элементные МЖ, вычисленные  либо относительно центра 
тяжести треугольника, либо центра окружности, вписанной в треугольник, дают 
универсальный результат, что позволит в процессе реализации метода конечных элементов 
снять  любые ограничения по форме КЭ при контролируемой погрешности. 

5. Свойства конечно–элементных уравнений серьезно улучшаются при использовании 
альтернативных решений для МЖ. 

6. Распространение  концепции континуальной матрицы жесткости к трехмерным 
полям для КЭ типа тетраэдр предполагается. 
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V.F. BULAVIN, T.G. BULAVINA, V.V. YAHRICHEV 

 
ENGINEERING ANALYSIS AND NEW TECHNOLOGIES  

IN THE FINITE ELEMENT METHOD 
 

Abstract. Mathematical apparatus for the study is Green's formula.  In this paper we obtain the solution for 
the continuum of a plurality of element stiffness matrices linear finite element. The continuum model the finite element 
contains in its composition as a classical solution, and a number of universal. Verification of the result is based on the 
principle of the analogy with electrical circuit. The main difference of the obtained relationships is the ability to remove 
any restrictions on the shape of finite elements by means of a suitable choice of the element stiffness matrix and basis 
functions The conditionality of the finite element system of equations when using universal solutions improves, which 
increases the reliability of the calculations performed for a given methodological error. Theoretical insights are 
accompanied by a control sample. 

Keywords: Green formula, finite element method, the stiffness matrix, the approximation, the conditionality of 
the system of equations. 
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ПРИБОРЫ, БИОТЕХНИЧЕСКИЕ СИСТЕМЫ 
И ТЕХНОЛОГИИ 

УДК 62–529 
 

С.Ф. ЯЦУН, А.А. БАРЫБИН, Б.В. ЛУШНИКОВ, Е.Н. ПОЛИТОВ 
 

МОДЕЛИРОВАНИЕ РЫБОПОДОБНОГО РОБОТА В СРЕДЕ MATLAB/ 
SIMULIMK/SIMMECHANICS 

 
Аннотация. В статье представлены результаты компьютерного моделирования автономного 

подводного робота, основанного на бионических принципах движения, реализованного в среде MATLAB/ 
Simulimk/SimMechanics. Разработанная программа позволяет исследовать влияние различных параметров 
конструкции робота и факторов окружающей среды на его кинематические и динамические характеристики. 

Ключевые слова: подводные плавающие роботы, бионические принципы движения, робот–рыба, 
моделирование. 

 
Введение 
Эволюция обеспечила оптимальные конструктивные особенности многих животных, 

в том числе и рыб, которые имеют достаточно высокую эффективность в их ареале обитания. 
Особенности таких конструкций могут повлиять на развитие робототехники в области 
автономных необитаемых подводных аппаратов (АНПА) [1]. Например, механика движения 
рыбы может быть использована при конструировании АНПА бионического типа [2–5].  

Основными задачами АНПА являются: разведка ресурсов, мониторинг технического 
состояния других подводных объектов, гидросферы, а также проведение аварийно–
спасательных работ.  

Главным преимуществом использования рыбоподобной конструкции является 
относительная бесшумность и скрытность подводного аппарата. Из недостатков можно 
отметить сложность управления таких типов роботов. Данные роботы и их модели 
разрабатываются с целью оценки и выявления новых преимуществ и недостатков такого 
вида механизмов, а также изучения особенностей поведения робота в водной среде, 
разработанных с использованием механики рыб и других морских обитателей [1– 16]. 

В представленной работе описана разработка модели рыбы–робота в среде MATLAB/ 
Simulimk/SimMechanics, показаны некоторые результаты моделирования данного робота, а 
также проведен сравнительный анализ результатов моделирования, полученных в 
представленной и предыдущих работах [16–17]. 

Основная часть 
Конструктивно робот разделён на три основные части (рисунок 1): 1)«тело» (основная 

часть робота), 2) предхвостье, 3) хвостовой плавник [18–22]. В дальнейшем все выше 
перечисленные части робота будем считать плоскими недеформируемыми пластинами.  

Положение робота в пространстве будет определяться координатами центра масс 
«тела» робота (X;Y;Z), и углами α и θ его поворота вокруг осей Y и Z соответственно. 
Установившееся значение угла крена вокруг оси X будем принимать равным нулю 
вследствие обеспечения безусловной остойчивости робота, в результате действия момента, 
создаваемого силой тяжести и силой Архимеда.  

При моделировании все составляющие компоненты вычислительного комплекса были 
скомпонованы в отдельные подсистемы для облечения читаемости программы. Основная 
программа компьютерного моделирования робота–рыбы представлена на рисунке 2. 

Основным исполнительным механизмом робота является привод хвостового 
плавника, который представляет собой кривошипно–коромысловый механизм (рисунок 3), 
для которого приняты следующие размеры [18–22]: межосевое расстояние ОО1=0,05 м; 
длина кривошипа ОА=0,01 м; угол хода хвоста–коромысла φ=60о. 
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визуализировать движение моделируемого объекта, за счет анимационных возможностей, 
обеспечиваемых пакетом MATLAB/SimMechanics. Программа может быть использована для 
оптимизации конструкции и приводов робота  и его системы управления по различным 
критериям качаства. 
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SIMULATION OF FISH–LIKE ROBOT  
IN THE MATLAB / SIMULIMK / SIMMECHANICS 

 
Abstract. The article presents the results of computer simulation of an autonomous underwater robot based on 

bionic principles of motion realized in the MATLAB / Simulimk / Simmechanics environment. The developed program 
allows to investigate the influence on the kinematic and dynamic characteristics of the robot of various parameters: 
robot design and environmental factors. 

Keywords: underwater floating robots, bionic principles of motion, robot–fish, modeling. 
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О.С. ЮЛЬМЕТОВА 
 

ФОРМАЛИЗАЦИЯ КОНЦЕТУАЛЬНОЙ МОДЕЛИ ПРОЦЕССА 
ПОВЫШЕНИЯ ТОЧНОСТИ  ЭЛЕКТРОСТАТИЧЕСКОГО ГИРОСКОПА 

 
Аннотация. В работе приведены принципы формализации концептуальной модели повышения 

точности бескарданного электростатического гироскопа (БЭСГ). Обоснована последовательность 
определения целевых функций и оптимизируемых параметров с формированием  моделей, основанных на 
использовании ионно–плазменных и лазерных технологий (ИПЛТ), посредством декомпозиции гироскопа до 
узлов и функциональных элементов с выявлением критериев оценки и показателей точности на каждом уровне. 
Определены технологические аспекты и признаки использования ИПЛТ для создания функциональных 
элементов, связанные с изменением геометрии и состояния объекта и обусловленные протеканием 
структурно–фазовых превращений модифицируемого поверхностного слоя материала. Представлена 
совокупность и методы расчета химических взаимодействий, обеспечивающих структурно–фазовые 
превращения. На примере ротора БЭСГ обоснована эффективность комплексного использования моделей 
ИПЛТ для решения многоцелевых задач, связанных с формирования оптических параметров ротора и 
минимизацией различия электрофизических свойств базовой поверхности ротора и поверхности растрового 
рисунка. 

Ключевые слова: гироскоп, ротор, системное моделирование, целевая функция, оптимизируемые 
переменные, растровый рисунок, оптические характеристики,  ионно–плазменные и лазерные технологии. 
 

Введение 
Бурный рост промышленности и науки приводит к ситуации, когда создание каких–

либо новых технологий и технических объектов становится невозможным без интенсивного 
применения научных методов поиска технических решений. Одним из таких аспектов 
научного исследования является метод системного моделирования, без которого не обходится 
ни одна конструкторская и ни одна исследовательская работа [1], и в ходе которого можно 
выделить концептуальную модель и схемы моделирующих алгоритмов для исследуемого 
объекта. Концептуальная или обобщенная модель, как правило, имеет избыточное число 
переменных, что усложняет интерпретацию результатов, поэтому весьма важным аспектом 
системного моделирования является формализация концептуальной модели с декомпозицией, 
как самого объекта, так и сочетаний управляющих факторов, что позволяет перейти к более 
наглядным и простым структурам моделей.  

Постановка задачи 
Примером эффективного применения методов системного анализа для решения задач 

создания бескарданного электростатического гироскопа (БЭСГ), который используется в 
системах ориентации орбитальных космических аппаратов [2], является разработка 
информационно–логической модели (ИЛМ) технологического проектирования процесса 
изготовления основного узла БЭСГ – сферического ротора [3]. В ИЛМ выделены основные 
параметры ротора – динамические, геометрические, оптические, а также сгруппированы 
характеристики элементов ротора, непосредственно влияющие на эти параметры. К 
указанным характеристикам можно отнести его моменты инерции и дисбаланс, контраст и 
равномерность контраста. ИЛМ включает последовательное формирование требований к 
узлам и элементам БЭСГ и синтез результатов, обеспечиваемых использованием ионно–
плазменных и лазерных технологий (ИПЛТ). Вместе с тем система, определяющая процесс 
создания и повышения точности БЭСГ, является более сложной структурой, в которой 
существует множество взаимосвязей, часть из которых может быть и неочевидного 
характера. Это требует выявления комплексных системных подходов, которые могут 
базироваться на  формализации концептуальной модели процесса, что позволит, в конечном 
счете, определить логические обоснованные механизмы использования ИПЛТ, в том числе и 
для решения многоцелевых задач.   
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Цель работы заключалась в формализации концептуальной модели процесса создания 
и повышения точности БЭСГ с формированием моделей использования ИПЛТ. 

В работе решались следующие задачи:  
– выбор принципов и условий последовательной формализации концептуальной 

модели с переходом от содержательного описания процесса создания БЭСГ к совокупности 
моделей, основанных на ИПЛТ;  

–  выявление для целевых функций элементов БЭСГ управляемых переменных в 
задачах оптимизации. 

Формализация концептуальной модели на основе использования  ИПЛТ 
В общем виде процесс создания изделия можно представить как переход объекта из 

исходного состояния X в требуемое конечное состояние Y в результате воздействия внешних 
факторов, представляющие собой оператор перехода P, который, по сути, является функцией, 
описывающей конкретное воздействие, или системы выражений: 

 YXP : ,       (1) 

Указанную систему можно рассматривать как концептуальную модель, формализация 
которой, связанная с выводом аналитического вида целевых функций, позволит, выявить 
технические решения процесса создания конкретного объекта. 

Формализация модели, определяемой системой выражений (1), связана с 
формированием структурной схемы корреляции показателей точности,  где уровни этих 
показателей определены на основе декомпозиции и выявления иерархической структуры 
изделия, его элементов, а также параметров, характеризующих точность на каждом уровне. 
Можно считать, что точность гироскопа, как выходной параметр, является функцией 
внутренних параметров, формируемых в результате декомпозиции концептуальной модели. 
Для выполнения указанной последовательной формализации можно сформулировать 
следующие положения: 

 – декомпозиция объекта, каким в данном случае является БЭСГ, до узлов, деталей и 
функциональных элементов с выявлением корреляции показателей точности; 

– определение для этих узлов, деталей и функциональных элементов целевых 
функций, согласованных  с целевой функцией концептуальной модели. 

Точность гироскопа обеспечивается с одной стороны, точностью определения 
углового положения ротора, а с другой – минимизацией уводящих моментов. Для БЭСГ 
угловое положение ротора полностью определяется точностью функционирования 
оптоэлектронной системы съема информации (ОСС) [4]. Выбирая в качестве целевой 
функции точность гироскопа и определяя его как первый уровень декомпозиции, на втором, 
иерархически подчиненном уровне, можно представить такие узлы гироскопа, как ОСС и 
ротор, показатели точности узлов и критерии оценки этих показателей. 

 Точность ОСС определяется чувствительностью оптического измерителя, связанной с 
точностью наносимого на ротор рисунка, а контролируемыми показателями  точности ОСС 
можно считать кривые нелинейности, пространственные карты отражения поверхности 
ротора, и сигнал с оптического датчика в экваториальной зоне ротора [4]. Другой 
характеристикой чувствительности ОСС является контраст рисунка K, обусловленный  
нормированной разностью коэффициентов отражения базовой  Rb  поверхности ротора и 
нанесенного рисунка Rr,  

                                                     
rb

rb

RR

RR
K




 .                                                                 (2) 

Ротор БЭСГ можно представить как узел, содержащий такие элементы, как 
сферическая бериллиевая основа, покрытие нитрида титана и растровый рисунок. 
Основными техническими характеристиками, определяющими точность ротора и 
влияющими на уводящие моменты, для сферической заготовки являются дисбаланс, форма и 
моменты инерции, а для покрытия и рисунка – оптический контраст (выражение (2)). Таким 
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образом, техническими характеристиками покрытия и рисунка являются значения 
коэффициентов отражения Rb  и Rr, а контраст K можно определить как параметр ротора и 
показатель чувствительности ОСС. Процесс формирования контраста K обеспечивается 
согласованным использованием моделей формирования  Rb  при нанесении покрытия на 
основу ротора и Rr  при лазерном маркировании рисунка.  

Принимая точность БЭСГ в качестве основного оптимизируемого показателя или 
критерия оценки, можно представить систему целевых функций Fi  в виде: 

                                    {Fi=F(x1, x2, x3… xn)},     (3) 
где  x1, x2, x3… xn – аргументы, подлежащие оптимизации и являющиеся управляемыми 
параметрами.  

При этом указанные аргументы, в зависимости от уровня детализации,  относятся к 
гироскопу, его узлам или функциональным элементам, определяя соответствующие 
показатели  точности. Для каждого из узлов БЭСГ аргументы целевой функции Fузл. 
относятся к функциональным элементам этих узлов, обусловливая точность их выполнения. 
Очевидно, что на следующем этапе представления целевой функции Fф.эл. для 
функциональных элементов целесообразно оперировать аргументами, которые определяют 
технические характеристики этих элементов и являются конкретными параметрами, которые 
необходимо оптимизировать.  

Процесс оптимизации аргументов на уровне формирования функциональных 
элементов можно представить как выявление технологических решений на основе 
использования ИПЛТ [3]. При этом использование ИПЛТ наиболее эффективно в отношении 
сферического ротора, являющегося основным узлом БЭСГ, с формированием динамических 
(дисбаланс и моменты инерции) и оптических характеристик, причем наибольший интерес 
представляют оптические характеристики, поскольку, как указывалось, они во многом 
определяют точность ОСС, ротора и, как следствие, гироскопа. Выделяя для ротора 
подобные или определяемые выявленными взаимосвязями и формальным показателям 
технологические признаки формирования функциональных элементов, создаваемых в 
результате воздействия  ИПЛТ,  можно показать, что на этом уровне оптимизируемые 
аргументы связаны с изменением геометрии и состояния материала и обусловлены 
протеканием структурно–фазовых превращений. 

 

Таблица 1. – Воздействие методов ИПЛТ на ротор БЭСГ 
№ 
п/п 

Реакция Механизм 
Формируемый 
параметр 

1. Ме(тв) → [Ме(ж)] → Ме(г) 
Удаление материала, 

(сублимация, испарение) 
 

Момент инерции, 
дисбаланс 

 
2. Ме(г) → [Ме(ж)] → Ме(тв) 

Добавление материала 
(конденсация) 

3. 
2kМе  + mО2   → 2МеkОm 

2pМеkОml + (ks–pl)О2   → 
2kМеpОs 

Образование оксидов  Оптические параметры 

4. 
2aМеп  + bN2  → 2Меa

п Nb 

2dМеa
пNb  + (c–ab)N2  → 

2Меad
пNc 

Образование нитридов  Оптические параметры 
и однородность свойств 

поверхности 
5. 

Мех
п + Меy

осн 
 → [Меп]х

 [Меосн]y 

Мех
п + Меу

осн 
 → {Мех

п Меy
осн

 } 
Образование твердых рас– 
творов и интерметаллидов 

   
Наглядно это можно представить в виде таблицы 1, в которой на примере ротора 

БЭСГ приведены виды возможных реакций, их механизмы и формируемые параметры 
функциональных элементов.  В таблице 1 обозначены: Me и  Meп – материалы основы ротора 
и покрытия, a,b,c,d,f, k,l,m,p,s.x и  y – стехиометрические коэффициенты. Как указывалось [3], 
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динамические характеристики ротора – моменты инерции и дисбаланс – связаны с 
перераспределением массы материала по его поверхности и формируются за счет удаления 
или добавления материала, а оптические параметры создаются посредством модификации 
поверхностного слоя материала покрытия. Рассматривая компоненты химических реакций в 
таблице 1 как термодинамические фазы, можно выделить фазовые переходы, к которым 
относятся реакции 1 и 2.  

 Применяя, например, к реакции Ме(тв)→ Ме(г) понятия термодинамики, можно 
показать, что тепловой эффект этой реакции равен энтальпии сублимации. Реакции №№ 3–5 
можно рассматривать как очевидные реакции замещения и соединения [5]. 

Объективными критериями оценки условий протекания этих процессов, которые 
являются термически активируемыми [6], является термодинамический анализ, 
обусловленный расчетом энергии Гиббса ΔG0

T в соответствии с выражением:  

            k
g

T T

ppT PRTdtCTTdtCSTHG    ln/1
298 298

0
298

0
298

0 ,                            (4)  

где  Cp – теплоемкость, ΔH0
298  

ΔS0
298

 – изменение стандартных значений энтальпии и энтропии системы,  
Т – температура процесса,  
R – универсальная газовая постоянная  и Рg парциальное давление участвующего в 

реакции компонента g газовой среды.  
С другой стороны, при создании функциональных элементов ротора методами ИПЛТ 

точность каждого элемента определяет кинематика ротора относительно потока 
высокоэнергетических частиц, и в качестве переменных аргументов при формировании 
целевой функции на этой стадии можно выделить множества сочетаний факторов процесса 
ИПЛТ {Фиплт} и параметров кинематики {Фкинем}.   

Тогда концептуальную модель для процессов, основанных на ИПЛТ, которые 
переводят объект из состояния X в состояние Y, можно представить в виде совокупности 
(кортежа) разнородных множеств и отношений между ними, где состояние объекта  Y 
определяется  подмножествами  M и G, обусловленными изменением либо материала (М), 
либо геометрии (G), либо и материала и геометрии объекта (MG): 

 

    

     

     

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
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
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MGMGMG

MMM

GGG

FGMYYyyxPXx

FYMMyyxPXx

FYGGyyxPXx

YXP
             (5)

 

Основным этапом формализации являются определение сочетаний в множествах M и 
G, характеризующих технологические аспекты процесса формирования функциональных 
элементов. Раскрывая содержание множества {Фиплт}, можно выделить такие управляемые 
факторы в задаче оптимизации, как температуру, скорость и время обработки, парциальное 
давление и энергию Гиббса для химических реакций.   

Множество {Фкинем} очевидным образом включает факторы, определяющие 
ориентацию и перемещение ротора относительно ионного потока или лазерного луча [7].   

Таким образом, процесс формирования функциональных элементов на роторе связан с 
совместным использованием моделей, определяющих кинематику ротора, и моделей, 
описывающих структурно–фазовые изменения модифицируемых слоев.   

Моделирование процессов формирования растрового рисунка на основе 
структурно–фазовых изменений модифицируемого слоя.  

При создании оптических характеристик, определяемых коэффициентом 
контрастности K, коэффициент отражения базовой  Rb  поверхности ротора формируется на 
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стадии нанесения покрытия [3,7], а коэффициент отражения рисунка Rr – при лазерном 
маркировании [5,6] покрытия нитрида титана TiN.  В зависимости от парциального давления 
азота при напылении магнетронным методом образуется нитрид титана формулы TiNx, где 
область гомогенности лежит в пределах содержания азота от 29,6 до 53,7%, что соответствует 
химическому составу от  TiN0,42 до TiN1,16, а цвет изменяется от светло–золотисто–желтого до 
темно–золотисто–желтого [8]. Формирование покрытия формулы TiNx, где x лежит в 
пределах 0,6–0,7, приближает его цвет к светло–золотисто–желтому, увеличивая Rb. 
Моделирование процесса связано с расчетом по выражению (4) энергии Гиббса G0

T 

взаимодействия 2Ti+xN2→2TiNx с использованием значений  энтальпии 
0
298H  и энтропии 

0
298S для соединений TiNx, где x<1,  которые приближенно можно определить, используя 

метод химического подобия и исходя из того, что энтропия сложного вещества складывается 
из энтропии, связанной с массой соединения и межчастичным взаимодействием [9]. 

В процессе лазерного маркирования, осуществляемого в воздушной среде, 
преимущественно будет протекать окисление нитрида титана 2TiNx+2O2=2TiO2+xN2, с 
получением требуемого значения коэффициента отражения рисунка Rr.  В данном случае,  
предполагая, что контраст K увеличивается экспоненциально с увеличением мощности  W 
лазера, моделирование процесса, помимо расчета энергии Гиббса, можно представить как 
выбор оптимальной аппроксимирующей функции [10]. На первом этапе используется 
непараметрическая аппроксимация, в результате которой можно получить зависимость

0
max

W
W

AeKK


 , где Kmax  – максимально достижимое значение контрастности 

(определяется характером взаимодействия материала с лазерным излучением), W0  – 
мощность, при которой K уменьшается в e раз, и А  – константа, конкретизирующая характер 

зависимости 0W
W

eK


 .  Поскольку лазерная маркировка TiNx при х<1, позволяет получить 

одинаковые значения контрастности при меньшей  мощности лазера W, что связано с более 
высокими значениями коэффициента отражения Rb, можно предположить, что для каждого 
состава TiNx в зависимости от величины x будет изменяться параметр А. На втором этапе 
осуществляется параметрическая аппроксимация, когда осуществляется количественное 
обозначение параметров модели. В конечном счете, для конкретного варианта это позволяет 
определить значения Kmax, W0  и константы А.  

Более эффективным техническим решением, позволяющим на стадии лазерного 
маркирования решать многоцелевые задачи, является модель лазерного маркирования с 
обеспечением минимальной разницы электропроводности базовой поверхности и растра.  

Для перспективных конструкций БЭСГ, когда основные требования по форме, 
моментам инерции и дисбалансу ротора обеспечены, однородность электрофизических 
свойств поверхности ротора может иметь большое значение для повышения точности 
гироскопа, что обусловлено  негативным влиянием неоднородности свойств поверхности на 
динамику ротора в электростатическом подвесе вследствие тормозящих моментов. 

Для представленного выше варианта выполнения растра в виде оксидного слоя 
титана, разница в электрофизических свойствах весьма существенна, например, для TiN и 
оксида TiO2 удельное сопротивление отличается на несколько порядков.  

Вместе с тем, в системе TiNx для соединений с различным содержанием азота, 
например  TiN0,6   и  TiN0,9,   удельное сопротивление может отличаться всего на 10–15%  [11]. 
При этом цветовая гамма указанных соединений отвечает условию получения требуемой 
контрастности растра. Для управления коэффициентом Rb и минимизации различия в 
электрофизических свойствах наиболее эффективно обеспечение в процессе лазерного 
маркирования условий протекания взаимодействия  TiNx +N2= TiNy, где x<y, т.е. структурно–
фазового перехода нитрида титана из одного нестехиометрического состояния в другое. 
Указанными условиями в данном случае являются  проведение процесса лазерного 
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маркирования в среде избыточного давления азота.   
Термодинамический расчет энергии Гиббса G0

T для реакции TiN0,6+0,2N2= TiN 
показывает, что это взаимодействие разрешено в интервале температур (298–1000)К, что 
говорит о принципиальной возможности использования предложенного технического 
решения.  

Заключение 
В рамках проведенных теоретико–прикладных исследований представлена 

последовательная формализация концептуальной модели процесса повышения точности 
БЭСГ, основанная на  декомпозиции, как самого объекта, так и оптимизируемых 
переменных. Предложены методы выявления целевых функций и управляемых переменных в 
задачах оптимизации на различных уровнях процесса формализации. Обоснована 
эффективность как совместного, так и согласованного использования математических и 
термодинамических моделей для расширения возможностей применения ИПЛТ при 
формировании оптических характеристик ротора БЭСГ. Определены перспективы 
использования моделей, основанных на структурно–фазовых переходах в  модифицируемом 
материале для решения многоцелевых задач повышения точности БЭСГ. 
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O.S. YULMETOVA 
 

FORMALIZATION OF THE CONCENTUAL MODEL  
FOR THE PROCESS OF INCREASING THE ACCURACY  

OF THE ELECTROSTATIC GYROSCOPE 
 
Abstract. The article describes principles of the formalization of the conceptual model for increasing the 

accuracy of electrostatic gyroscope. The sequence of determination of objective functions and parameters of 
optimization with the formation of models based on the use of ion–plasma and laser technologies (IPLT) is presented. 
The sequence is formed  by means of decomposition of the gyroscope to nodes and functional elements with the 
identification of evaluation criteria and accuracy indicators at each level. Technological aspects for use of IPLT during 
creation of functional elements are determined. It was revealed that technological formation of each element is  
connected with the change of the geometry or properties of material  and can be described by structural–phase 
transformations of the modified surface layer of the material. The set and methods for calculationg chemical 
interactions providing structure–phase transformations are presented. The effectiveness of the integrated use of IPLT 
models  for solving multi–purpose problems associated with the formation of optical parameters of the rotor and 
minimizing the difference in its electrophysical properties  was shown. 

Keywords: gyroscope, rotor, system modeling, objective function, optimized parametrs, raster image, optical 
characteristics, ion–plasma and laser technologies. 
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КОНТРОЛЬ, ДИАГНОСТИКА, ИСПЫТАНИЯ 
И УПРАВЛЕНИЕ КАЧЕСТВОМ 

УДК 629.7.018 
 

Е.С. ЕФРЕМОВА 
 

ИМИТАЦИЯ ВОЗДУШНЫХ СИГНАЛОВ ПРИ НАЗЕМНОЙ 
ОТРАБОТКЕ И КОНТРОЛЕ ФУНКЦИОНИРОВАНИЯ КОМПЛЕКСОВ 

БОРТОВОГО ОБОРУДОВАНИЯ САМОЛЕТА 
 

Аннотация. Рассматривается задача имитации параметров движения самолета относительно 
окружающей воздушной среды, особенности построения, алгоритмы формирования выходных сигналов и 
варианты реализации имитатора воздушных сигналов самолета для контроля функционирования и наземной 
отработке комплексов бортового оборудования на этапе производства. 

Ключевые слова: самолет, комплексы бортового оборудования, контроль функционирования, 
воздушные сигналы, имитация, вихревая система, алгоритмы, функциональная схема имитатора. 

 
Введение. 
В состав комплексов бортового оборудования самолетов и других объектов авиационной 

техники входят системы измерения высотно–скоростных параметров, определяющих их 
движение относительно окружающей воздушной среды и получивших название воздушных 
сигналов [1, 2]. Поэтому на этапе производства при наземной отработке и контроле 
функционирования комплексов бортового оборудования самолетов возникает необходимость 
имитации реальных режимов полета по воздушным сигналам [3, 4]. 

При имитации воздушных сигналов самолета необходимо обеспечивать синхронное 
формирование выходных сигналов по барометрической высоте Н, истинной воздушной 
скорости ВV , числу Маха М, приборной скорости ПРV , истинному углу атаки  , температуре 

наружного воздуха НТ , плотности окружающей среды Н  на высоте полета Н. Для 
формирования указанных воздушных сигналов по традиционным алгоритмам [5, 6] имитатор 
должен включать задатчики большого числа входных информативных сигналов реальной 
бортовой системы воздушных сигналов: полное ПР  и статическое CТР  давления на заданной 

высоте полета Н, температура TТ заторможенного набегающего воздушного потока, местные 

углы атаки М  на правом и левом бортах фюзеляжа, угол скольжения  . 
При этом имитатор системы воздушных сигналов самолета должен обеспечивать 

выдачу цифровых (кодовых) или при необходимости и  аналоговых сигналов, 
пропорциональных барометрической высоте, истинной воздушной скорости, температуре 
наружного воздуха, числу Маха, приборной скорости, истинному углу атаки и другим 
воздушным сигналам на характерных этапах и режимах полета самолета с техническими и 
метрологическими характеристиками, близкими к характеристикам имитируемых бортовых 
систем воздушных сигналов. 

Все это затрудняет создание полномасштабного имитатора бортовых систем 
воздушных сигналов, усложняет его конструктивную схему, повышает стоимость 
изготовления и эксплуатации. 

Основная часть. 
Ниже раскрывается возможность создания сравнительно простого унифицированного 

имитатора выходных сигналов системы воздушных сигналов самолета для наземной 
отработки и контроля функционирования комплексов бортового оборудования, 
построенного на основе разработанной в Казанском национальном исследовательском 
техническом университете им. А.Н. Туполева–КАИ оригинальной вихревой системы 
воздушных сигналов самолета [7, 8]. 

На рисунке 1 приведена схема, определяющая функциональные и конструктивные 
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регистрации частот 3, которые измеряют частоты 1f  и 2f  вихреобразования за 
клиновидными телами 1. 

Частоты 1f  и 2f  вихреобразования за клиновидными телами с характерным размером l, 
основания которых расположены ортогонально друг к другу под углом  902 0 , будут 

определяться соотношениями вида [9]: 
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            (1) 

Измеренные частоты 1f  и 2f  поступают на вход устройства обработки 4, выполненного 
в виде вычислителя, на выходе которого формируются значения аэродинамического угла   и 
истинной воздушной скорости ВV  в соответствии с уравнениями [7, 8] 
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где  1f  и 2f  – частоты  вихреобразования за  клиновидными телами;  
Sh – число Струхаля;  
  и ВV  – измеряемый аэродинамический угол и истинная воздушная скорость. 
При конструктивной реализации вихревого датчика аэродинамического угла и 

истинной воздушной скорости клиновидные тела располагаются на одной оси друг над 
другом. С целью обеспечения измерения в трехмерном набегающем потоке и устранения 
влияния другого аэродинамического угла   самолета, перпендикулярно общей оси 
клиновидных тел установлены струевыпрямители, выполненные в виде тонких дисков 5, 
расположенных на верхних и нижних основаниях обоих клиновидных тел 1 и выделяющих в 
набегающем воздушном потоке зоны вихреобразования клиновидных тел. Это снижает 
влияние скоса набегающего потока в плоскости, перпендикулярной плоскости измерения, а, 
следовательно, уменьшает погрешности, обусловленные этим скосом потока. 

Для расширения функциональных возможностей вихревого датчика аэродинамического 
угла и истинной воздушной скорости и обеспечения измерения других высотно–скоростных 
параметров – барометрической высоты  Н, температуры НТ  наружного воздуха на высоте полета 

Н, плотности воздуха Н  на высоте Н, приборной скорости ПРV , числе Маха М и других 
связанных с ними параметров, на верхней или нижней поверхности одного струевыпрямителя 5, 
например, верхнего, установлен отверстие–приемник 6 статического давления НР  набегающего 
воздушного потока, который через пневмопровод 7 связан со входом пневмоэлектрического 
преобразователя (датчика) 8 абсолютного давления преимущественно с частотным выходным 
сигналом. Выход пневмоэлектрического преобразователя (датчика) 9 в виде частоты 

НР
f , 

пропорциональной статическому давлению НР  набегающего воздушного потока, подключен ко 
входу устройства обработки 4. Устройство обработки 4 выполнено в виде вычислителя, 
реализующего предложенные [9] алгоритмы определения всех высотно–скоростных параметров 
движения самолета относительно окружающей воздушной среды, в том числе: 

1. По воспринимаемому статическому давлению НР  набегающего воздушного потока 

в соответствии со стандартными зависимостями, соответствующими ГОСТ 4401–81 [10], 
абсолютная высота полета в диапазоне  [–200 м < Н < 11000 м] определяется по формуле 
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где  0Т =288,15 К и 0P =101325 Па – абсолютная температура и давление на высоте Н=0; 
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τ=0,0065 К – температурный градиент;  
R=29,27125 м/К – газовая постоянная. 
2. Используя ГОСТ 5212–74 [11], истинную воздушную скорость ВV , измеренную 

вихревым датчиком, можно представить в виде 
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где  2м/с80665,9g  – ускорение силы тяжести;  

динНП РРР   – полное давление набегающего воздушного потока;  

2

2
ВН

дин

V
Р


  – динамическое давление (скоростной напор) набегающего воздушного 

потока;  
k=1,4 – показатель адиабаты воздуха. 
3. Плотность воздуха Н  на высоте Н можно представить как [12] 
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где  3 2 4
0 1,225кг/м 0,125кГс /м    – массовая плотность воздуха на высоте Н=0.  

4. Подставив в выражение (4) значения параметров ВV  и НР , измеряемых вихревым 
датчиком, получим соотношение вида 
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которое устанавливает неявную, но однозначную связь измеряемой вихревым датчиком 
истинной воздушной скорости ВV  с абсолютной температурой НТ  на высоте Н.  

5. Определяя из соотношения (6) абсолютную температуру НТ , по зависимости (5) 

можно определить плотность воздуха Н  на высоте Н. 
6. В соответствии с ГОСТ 5212–74 [11] можно определить (вычислить) приборную 

скорость полета, т.е. истинную воздушную скорость ВV , приведенную к нормальным 
условиям на уровне Н=0, по формуле  
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7. Число Маха М, характеризующее отношение истинной воздушной скорости ВV  к 

скорости звука НН kgRTa   на высоте Н, для дозвуковых скоростей полета будет 

определяться уравнением  
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Таким образом, воспринимая и измеряя частоты 1f  и 2f  вихреобразования за 

клиновидными телами и абсолютное статическое давление НР  набегающего воздушного 
потока, по зависимостям (2) – (8) в вычислителе 4 определяются все высотно–скоростные 
параметры полета – воздушные сигналы самолета, существенно расширяя функциональные 
возможности вихревого датчика аэродинамического угла и истинной воздушной скорости. 
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По сравнению с известными системами воздушных сигналов вихревая система 
воздушных сигналов имеет ряд существенных преимуществ: 

 Обеспечивает одновременное измерение всех высотно–скоростных параметров, 
определяющих движение самолета относительно окружающей воздушной среды. 

 Измерение всех высотно–скоростных параметров движения самолета 
осуществляется с помощью одного неподвижного многофункционального малогабаритного 
приемника потока, практически не искажающего аэродинамику самолета и не влияющего на 
его аэродинамические характеристики. 

 Измерение всех высотно–скоростных параметров обеспечивается без существенного 
усложнения конструктивной схемы вихревого датчика аэродинамического угла и истинной 
воздушной скорости, а следовательно повышения себестоимости его производства. 

 Использование в качестве первичной информации частотно–временных 
информативных сигналов позволяет снизить погрешности, обусловленные дрейфом нуля и 
изменением чувствительности элементов измерительной цепи восприятия, преобразования, 
передачи и обработки информации. 

 Получение выходных сигналов по всем высотно–скоростным параметрам самолета в 
непосредственно цифровой форме упрощает их использование в современных системах 
отображения информации, системах управления и других технических системах, в том числе 
в имитаторе. 

Указанные достоинства вихревой системы воздушных сигналов определяют 
перспективы построения на ее основе имитатора системы воздушных сигналов самолета для 
наземной отработки и контроля функционирования комплексов бортового оборудования. 

При построении имитатора на основе вихревой системы воздушных сигналов 
самолета возможны два варианта. 

Для реализации первого варианта необходима аэродинамическая труба или эталонная 
аэродинамическая установка, имитирующие воздушный поток, набегающий на 
многофункциональный приемник вихревой системы воздушных сигналов. При установке 
многофункционального приемника в рабочее поле аэродинамической трубы или эталонной 
аэродинамической установки и задании нормированной скорости воздушного потока на 
выходе вихревой системы воздушных сигналов будут заданы нормированные значения 
высотно–скоростных параметров полета самолета, соответствующих барометрической 
высоте полета, близкой к нулевой высоте. Сформированные вихревой системой воздушных 
сигналов нормированные значения высотно–скоростных параметров используются при 
контроле работоспособности бортовых систем самолета при стендовых испытаниях. 

Достоинством данного варианта построения имитатора является близость процесса 
формирования имитируемых высотно–скоростных параметров к реальному процессу работы 
бортовых систем воздушных сигналов. 

К недостаткам данного варианта имитатора можно отнести невозможность 
имитировать изменения барометрической высоты и необходимость использования 
сертифицированной аэродинамической трубы или эталонной аэродинамической установки. 

При реализации второго варианта имитатора системы воздушных сигналов самолета 
изготавливается экспериментальный образец вихревой системы воздушных сигналов 
самолета. Проводятся тарировочные испытания каналов аэродинамического угла и истинной 
воздушной скорости в сертифицированной аэродинамической трубе и определяются 
зависимости частот вихреобразования 1f  и 2f  от различных (заданных) значений скорости V 
набегающего воздушного потока и аэродинамического угла  , которые затем используются 
для имитации бортовой системы воздушных сигналов. 

На рисунке 2 приведена схема, раскрывающая функциональный состав такого 
имитатора системы воздушных сигналов самолета. 

Рассматриваемый имитатор системы воздушных сигналов самолета в своем составе 
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Задаваемые от двух эталонных генераторов импульсных или гармонических сигналов 
ГС1 и ГС2 значения частот вихреобразования 1f  и 2f  подаются на входы схем регистрации 
частот вихреобразования экспериментального образца вихревой системы воздушных 
сигналов и на выходе вычислителя в соответствии с уравнением (2) формируются 
имитируемые значения аэродинамического угла   и истинной скорости ВV . 

Для имитации барометрической высоты полета с помощью эталонного задатчика 
абсолютного давления (ЗАД), выполненного в виде автономной контрольно–поверочной 
аппаратуры (КПА) задается статическое давление НР  на заданной высоте полета Н. К 
штуцеру, установленному на поверхности верхнего экранирующего диска вихревого датчика 
с помощью пневмопровода подключается выход задатчика абсолютного давления. При 
заданном значении давления НР , используя вычисленные значения аэродинамического угла 
  и истинной воздушной скорости, по зависимостям (3) – (8) в вычислителе вихревой 
системы воздушных сигналов определяются все другие имитируемые высотно–скоростные 
параметры полета самолета. Выходные сигналы вычислителя через устройство УПАС и С 
поступают на промышленный ноутбук, который осуществляет их индикацию и передачу в 
бортовой информационно–измерительный и управляющий комплекс. 

Таким образом, на выходе имитатора системы воздушных сигналов формируются 
коды всех имитируемых высотно–скоростных параметров полета самолета, которые 
используются при наземной отработке и контроле функционирования бортового 
информационно–измерительного и управляющего комплекса самолета. При этом по 
сравнению с первым вариантом не требуется сертифицированная аэродинамическая труба 
или эталонная аэродинамическая установка, это определяет предпочтительность 
использования данного варианта имитатора системы воздушных сигналов для наземной 
отработки комплексов бортового оборудования самолетов различного класса и назначения. 

Работа выполнена в рамках базовой части государственного задания в сфере научной 
деятельности по заданию Минобрнауки России № 2014/55 (НИР № 990). 
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Abstract. The problem of simulating the motion parameters of airplane relative to the surrounding air 
environment, features of construction, the algorithms for generating output signals and implementation versions of the 
simulator of air data signals from airplane to control the functioning and ground testing of avionics onboard systems at 
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УДК 629.735.45: 551.53 
 

О.И. КУЗНЕЦОВ, В.М. СОЛДАТКИН 
 

МЕТРОЛОГИЧЕСКИЙ АНАЛИЗ АВТОМАТИЗИРОВАННОЙ 
СИСТЕМЫ КОНТРОЛЯ И ПРЕДУПРЕЖДЕНИЯ ОПАСНЫХ РЕЖИМОВ 

ЭКСПЛУАТАЦИИ ВЕРТОЛЕТА 
 

Аннотация. Раскрывается задача контроля и предупреждения опасных эксплуатационных режимов 
вертолета, критерии эффективности контроля. Используя вероятности пропуска опасной ситуации и ложного 
срабатывания, при допущении о нормальном законе распределения погрешностей получены соотношения для 
допустимых среднеквадратических погрешностей измерения контролируемых параметров характерных 
критических режимов полета вертолета, для алгоритмов канала предупреждения. 

Ключевые слова: вертолет, опасные режимы эксплуатации, автоматизированная система контроля, 
контролируемые параметры, допустимые погрешности, анализ, каналы измерения и предупреждения. 

 
Введение. 
Широкое использование гражданских и военных вертолетов обусловливает важность 

задачи обеспечения безопасной эксплуатации на всех этапах и режимах полета. 
Полеты вертолетов происходят в приземном возмущенном слое атмосферы и для 

обеспечения безопасности в условиях реальной эксплуатации необходимо использовать 
автоматизированные системы контроля и предотвращения опасных режимов полета, 
связанных с явлением «подхвата», режимом «вихревое кольцо», самопроизвольное левое 
вращение и др. [1, 2]. 

Основная часть. 
Особенности аэродинамической компоновки и динамики полета вертолета 

обусловливают значительное число летных и эксплуатационных ограничений, 
накладываемых Руководством по летной эксплуатации данного класса вертолета, связанных 
с ограничениями по прочности конструкции, на коэффициент режима работы и несущую 
способность несущего винта, на число Маха наступающей лопасти, на параметры 
маневрирования в вертикальной плоскости [3, 4]. 

Для обнаружения попадания в опасные нештатные ситуации, предупреждения 
экипажа и предотвращение критических режимов полета вертолета на его борту должны 
устанавливаться средства автоматизированного контроля и предупреждения опасных 
режимов, которые осуществляют контроль текущих значений характерных параметров 
движения вертолета, формирование их допустимых значений с учетом эксплуатационных и 
летных ограничений и метеорологических условий, обнаружение нештатных ситуаций, 
выдачу своевременных предупреждающих сигналов и управляющих «команд–подсказок» 
экипажу и в систему автоматического управления по выводу вертолета из возникающей 
опасной ситуации и обеспечение регламентированного Авиационными правилами уровня 
безопасности полета, т.е. выполнять функции информационно–управляющей системы 
предотвращения критических режимов вертолета (ИУСПКР) [4, 5]. 

Несмотря на отдельные особенности ИУСПКР вертолета представляет собой систему 
автоматизированного контроля. Поэтому для оценки эффективности каналов ИУСПКР 
вертолета можно применять критерии, принятые в практике исследования систем 
автоматизированного контроля – вероятность прP  пропуска опасной ситуации и вероятность 

лсP  

ложного срабатывания системы [6]. 
Причиной возникновения особой ситуации в процессе полета является изменение 

характерного для данного режима полета параметра хi движения вертолета, определяющего 
уровень его безопасности. В процессе полета фактическое значение ixф  параметра хi в полете 

может отличаться от номинального значения ixном , в качестве которого можно принять 

математическое ожидание характерного параметра хi на данном режима полета. Из–за 
погрешности Δхi канала определения (вычисления) параметра хi с учетом других параметров 
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движения вертолета полученное (вычисленное) значение ixизм  характерного параметра хi 

может отличаться от номинального значения ixном . 

Тогда вероятность 
пр

ixP  пропуска опасной ситуации по характерному параметру хi 

представляет собой вероятность выхода фактического значения ixф  контролируемого 

характерного параметра хi на границу ixпред  регламентированного РЛЭ вертолета предельного 

значения характерного параметра хi, соответствующему возникновению аварийной ситуации, в 
то время как вычисленное значение ixизм  не превышает порогового значения ixп , при котором 

срабатывает предупреждающая сигнализация, т.е. [7] 
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где  
ном ф номi i i

x x x    – отклонение фактического значения ixф  характерного параметра хi 

на данном режиме полета от его номинального значения ixном ;  

Δ хi – погрешность канала определения характерного параметра хi; 1 ном( )
i

W x  и 
2 ( )iW x  

– плотности распределения вероятностей ixном  и Δхi. 

Для оценки правильности принятия решения по обнаружению аварийной ситуации по 
характерному параметру полета хi используется понятие вероятности 

лс
ixP  ложного 

срабатывания системы предупреждения критических режимов, как вероятность выхода 
измеренного значения ixизм  контролируемого параметра хi за пределы ixпред , в то время, как 

фактическое значение ixф  находится в пределах допустимого значения, меньшего порогового 

значения ixп , т.е. [7] 
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Возникшая опасная ситуация рассматривается как произведение двух событий: 
события, заключающегося в том, что при выходе фактического значения ixф  

контролируемого параметра хi в опасную область имеет место аварийная ситуация и событие 
пропуска опасной ситуации с вероятностью 

пр
ixP . При этом вероятность возникновения 

аварийной ситуации однозначно определяется значением вероятности пропуска опасной 
ситуации пр

ixP , обусловленной изменением характерного параметра хi. 

Как видно из выражений (1) и (2), для оценки эффективности работы каналов 
ИУСПКР вертолета необходимо знание законов распределения случайных величин ixном  и 

Δхi, что возможно лишь для систем, находящихся в эксплуатации после набора достаточной 
статистики.  

На этапе проектирования и разработки систем предупреждения и предотвращения 
критических режимов полета вертолета в качестве предварительного критерия оценки 
эффективности каналов системы предлагается использовать условную вероятность пропуска 
опасной ситуации ус

пр
ixP и условную вероятность ложного срабатывания ixPус

лс по характерному 

параметру хi вида [7] 
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В этом случае для оценки эффективности каналов ИУСПКР не требуется знания 
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закона распределения фактических значений ixф  характерного параметра хi на данном 

режиме полета вертолета, а лишь на этапе проектирования должна быть принята 
правдоподобная гипотеза о законе распределения погрешности Δхi определения 
характерного параметра хi, например, гипотеза о нормальном законе распределении 
погрешности.  

Для нормального закона распределения случайной погрешности определения 
характерного параметра хi плотность распределения вероятностей W2(Δ ix ) принимает вид [7] 
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где  
ix  – среднее квадратическое значение случайной погрешности Δхi канала 

определения характерного параметра хi полета вертолета.  
Тогда условные вероятности ус

пр
ixP  и ус

лс
ixP  пропуска опасной ситуации и ложного 

срабатывания системы предупреждения критических режимов полета вертолета по 
параметру хi будут равны 
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где  Ф(  ) – табулированная функция Лапласа 
2
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t – значение в скобках функции Ф(  ) в выражениях (4) и (5); 
ixz k   ;  

k число, связывающее предельное значение 
предi

x  случайной погрешности 

определения характерного параметра хi с допустимым среднеквадратическим значением 

погрешности равным для нормального закона распределения погрешности ix x
i пред3

1
доп

 . 

Таким образом, используя заданные в техническом задании на разработку 
информационно–управляющей системы предотвращения критических режимов вертолета 
допустимые значения вероятностей пропуска опасной ситуации ус

пр прP P  и ложного 

срабатывания ус
лс лсP P , можно определить допустимые среднеквадратические значения 

допix  

случайных погрешностей определения характерных параметров хi критических режимов 
полета вертолета, позволяющие обоснованно проводить метрологический анализ каналов 
измерения и предупреждения ИУСПКР. 

Как показано в работе [8], характерные параметры хi критических режимов полета и 
их граничные значения 

грi
x  на границах возможных особых ситуаций являются известными 

функциями и других параметров jx  движения вертолета. 

В частности, на границах особых ситуаций, обусловленных летными ограничениями 
по прочности конструкции, граничные значения характерного параметра такого 
критического режима – приборная скорость является функцией абсолютной 
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барометрической высоты Н и истинной воздушной скорости вида [8] 

гр гр

1

прочность прочность0
пр в 1 в

0 0

1

; ( , ),
1

RH
T

V V f H V
T

H
T T

  
  

  

                          (6) 

где  ΔТ – превышение фактической температуры невозмущенной атмосферы на высоте Н 
по отношению к стандартной атмосфере с абсолютной температурой при Н = 0, равной Т0, и 
температурным градиентом по высоте τ;  

R = 29,27 м/град – газовая постоянная воздуха.  
На границах особых ситуаций, обусловленных летными ограничениями на 

коэффициент режима работы несущего винта, граничные значения приборной скорости 
определяются выражением [8] 

гр гр

1
1

пр в 2
0

1 ; ( , ).
R

V H V f H V
H




  
   

 
                                  (7) 

На границах особых ситуаций, связанных с летными ограничениями на число Маха 
Мл конца наступающей лопасти, граничные значения приборной скорости будут равны [8] 

л

1
1

М нв л
пр.гр 0 лгр

0
0

0

3 нв л

1 М

1

( , ,М )

R r
V kgRT H

T
kgRT H

T

f H


  

    
  

 

                    (8) 

где  ωнв – угловая скорость вращения лопасти несущего винта.  
На границах особых ситуаций, обусловленных летными ограничениями на несущую 

способность несущего винта, граничные значения вертикальной перегрузки определяются 
как [8] 

 
1

1

нс нснв л
гр 0 вгр 4 нв в

0

1 ( , , , )
2

R

y z z

r F
n H m V f H V

T


  

       
 

,         (9) 

где   zm   – коэффициент, определяющий связь отношения коэффициента тяги и 

коэффициента заполнения несущего винта с коэффициентом режима работы несущего винта, 
зависящим от угловой скорости 

z  вращения вертолета относительно вертикальной оси z;  

F – ометаемая площадь несущего винта.  
Граничные значения вертикальной перегрузки, определяющие летные ограничения на 

режиме «подхвата», возникающем при интенсивном маневрировании вертолета, 
определяются выражением вида [8] 

 
1

1

подхват подхватнв л пл
гр 0 вгр 5 нв в

0

1 ( , , , )
2

R

y z z

r F T
n m H V f H V

T


  

          
,            (10) 

где  σ – коэффициент заполнения несущего винта;  
Тпл – подъемная сила планера вертолета. 
Границы летных ограничений по вертикальной скорости 

грyV  на критическом режиме 

«вихревое кольцо» определяются выражением [8] 

гр в в в 6 в в( , , , ),y y x x x z z z x z x zV V k V k V f V V                                      (11) 

где  
в в в, ,x y zV V V  – продольная, вертикальная и боковая составляющие вектора истинной 

воздушной скорости вертолета, Vy=Vву – вертикальная скорость снижения;  
δх и δz – перемещения ручки циклического шага при продольном и боковом 

управлении;  
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kx и kz – постоянные коэффициенты.  
Полученные модели летных ограничений на характерные параметры критических 

режимов полета позволяют провести анализ погрешностей их определения в каналах 
ИУСПКР. 

При допущении о некоррелированности погрешностей измерения параметров jx , 

входящих в функции fi ( ) выражений (6–11), среднеквадратическое значение 
ix  

погрешности определения (измерения) характерных параметров 
ix  на различных 

критических режимах полета вертолета будут определяться как  
 для критического режима, обусловленного ограничениями по прочности 

конструкции  

    
пр в

22
2 2 21 1

обр
в

V H V

f f

H V  

               
;                                          (12) 

 для критического режима, обусловленного ограничениями на коэффициент режима 
работы несущего винта 

   
пр в

22
2 2 22 1

обр
в

V H V

f f

H V  

               
;                                         (13) 

 для критического режима, связанного с летным ограничением на число Маха 
наступающей лопасти  

  
пр нв л

222
2 2 2 23 3 3

М обр
нв лМV H

f f f

H   

                       
;               (14) 

 для критического режима, обусловленного летными ограничениями на несущую 
способность несущего винта  

нв в

2 2 22
2 2 2 2 24 4 4 4

обр
нв в

y zn H V
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f f f f
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,    (15) 

 для критического режима, обусловленного явлением «подхвата» вертолета 

нв в

2 2 22
2 2 2 2 25 5 5 5

обр
нв в

y zn H V
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f f f f

H V    

                                  
,    (16) 

 для критического режима «вихревое кольцо»  

в в

2 2 2 2

2 2 2 2 26 6 6 4
обр

в в
y x z x zV V V

x z x z
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V V    
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,   (17) 

где  2
обр  – дисперсия погрешности канала обработки ИУСПКР вертолета.  

Значения среднеквадратических погрешностей 
jx  измерения параметров jx  

рассмотренных критических режимов полета вертолета, входящих в выражениях (12–17) не 
должны превышать допустимых значений допjx , которые определяются из условия 

обеспечения заданных (регламентированных Авиационными правилами) значений 
вероятностей пропуска опасной ситуации 

пр
ixР  и ложного срабатывания 

лс
ixР  из–за превышения 

характерного параметра 
ix  предельного значения ixпред . 

При известных допустимых значениях 
допix  среднеквадратических погрешностей 

определения характерных параметров ix  критических режимов вертолета для обоснования 

требований к среднеквадратическим погрешностям 
Дx  измерения параметров 

Дx , входящих 

в выражения (12–17), можно использовать следующую методику [9], раскрываемую на 
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примере критического режима «вихревое кольцо».  
В соответствии с выражением (17) 

доп max в в

2 22
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в в maxmax max
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2 24
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.
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            (18)  

Методом последовательного приближения определяются допустимые значения 
среднеквадратических погрешностей 

допjx  измерения параметров 
jx . С этой целью на 

первом этапе вклад всех членов, входящих в выражение (18) принимается одинаковым и 
допустимые значения среднеквадратических погрешностей измерения влияющих параметров 

jx  определяются как  

допjx доп
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,                                                     (19) 

где  N – число членов, входящих в правую часть выражений (12–17).  
Применительно к критическому режиму «вихревое кольцо» получим  
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обр  доп

5
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(
20)

На втором и последующих этапах с учетом реальных среднеквадратических 
погрешностей 

Дx  измерения влияющих параметров 
Дx  используемых средств измерения 

осуществляется перераспределением допустимых погрешностей 
Д допx  между собой в 

пределах допустимой среднеквадратической погрешности 
допix  определения характерных 

параметров 
ix  данного критического режима полета вертолета.  

Как показывает опыт эксплуатации систем предупреждения и предотвращения 
критических режимов самолетов и вертолетов [10], алгоритмы срабатывания 
предупреждения сигнализации о приближении к опасным режимам полета имеют вид 

пор доп ст( ) ( ) ( )
i

i
i i i x

dx
x t x t x t Q

dt
    ,                                     (21) 

где  
пор( )ix t  – порог срабатывания канала сигнализации по характерному параметру 

ix ;  

ст ( )ix t  – статическое упреждение срабатывания сигнализации;  

ixQ  – коэффициент динамического упреждения сигнализации, учитывающей текущею 

скорость изменения idx

dt
 характерного параметра 

ix . 

Величина 
стix  назначается из условий компенсации влияния погрешности 

определения характерного параметра 
ix  и погрешности ∆

порix  задания порогового значения 

порix , т.е. 

ст пор( 3 )
i i ii x i x xx K x m       ,                                        (22) 
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где  
ixm  и 

ix  – соответственно систематическая погрешность и среднеквадратическое 

значение случайной погрешности определения характерного параметра 
ix ;  

ixK  – коэффициент запаса, учитывающий технологический разброс погрешности 

задания порога срабатывания сигнализации. 
Динамическое упреждение выбирается из условия компенсации времени переходного 

процесса эргатической системы «ИУСПКР – Экипаж – Система управления – Вертолет» по 
каналу параметра 

ix . 

Значение 
ixQ  определяется для конкретного типа вертолета по каждому каналу 

сигнализации путем имитационного моделирования и последующей натурной поверки. 
Допуск ∆

ixQ  на технологический разброс коэффициента упреждения 
ixQ  определяется 

из допустимой величине захода вертолета в буферную зону или недоиспользования его 
летно–технических возможностей по характерному параметру ix : 

'
пред пор

Д
max

i i

i

i i
x x

x i

x x
Q K

Q x


   ,                                                     (23) 

где  
Д ixK  – коэффициент, определяющий запас по буферной зоне (допустимый заход в нее 

или не подход к ней по параметру 
ix ). 

Рассмотренный подход позволяет обосновать требования к каналам упреждающей 
сигнализации информационно–управляющей системы предотвращения критических 
режимов вертолета по точностным критериям. 

Таким образом, предлагаемые методики метрологического анализа позволяют на 
этапе проектирования ИУСПКР вертолета оценить эффективность ее работы, обосновать 
требования к среднеквадратическим погрешностям определения характерных параметров 
критических режимов полета вертолета, а также к среднеквадратическим погрешностям 
измерения других параметров движения вертолета, используемых при обнаружении 
нештатных ситуаций, в каналах формирования упреждающих сигналов предупреждения и 
информационной поддержки экипажа в нештатных ситуациях.  

Работа выполнена в рамках базовой части государственного задания в сфере научной 
деятельности Минобрнауки РФ № 2014/55 (НИР № 990). 
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METROLOGICAL ANALYSIS OF THE AUTOMATED SYSTEM  
OF CONTROL AND PREVENTION OF DANGEROUS OPERATION 

MODES OF THE HELICOPTER 
 

Abstract. The task of monitoring and warning of dangerous operating modes of helicopter, criterion of efficiency of 
control are disclosed. Using the missing probabilities of dangerous situation and false alarms on assumption of normal law of 
error equations are obtained  for allowable root–mean–square error of measurement controlled parameters of characteristic 
critical flight modes of helicopter for the algorithms channel alerts. 

Keywords: helicopter, dangerous modes of operating, automated control system, monitored parameters, allowable 
error, analysis, measurement channels and alarms. 
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